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AFIT/GE/ENG/92D-37

Abstract

The Air Force has equipped its aircraft with avionic systems such as Global Posi-

tioning Systemis (GPS) and Inertial Guidance Systems (INS) capable of providing accurate

navigation solutions. The aircrews flying these aircraft require a system that can either

survive the hostile environments encountered in combat or notify the aircrew that their

performance has been significantly degraded. This research focuses on failure detection and

isolation techniques usiný, ,•,• extended Kalnan filter and generalized likelihood ratios using

matched filters, Analys!.s is conducted using a Kalman filter development package known

as the Multimode Simulatior. for Optimal Filter Evaluation (MSOFE). Both a large order

truth model for the navigation system (in which a full 24 satellite constellations is modeled)

and a reduced-order Kalman filter are developed. Results suggest that failures within the

UPS can he detected, isolaocd, and in soine ...cases c-m..pensated through feedback.

xv



DETECTION OF SPOOFING, JAMMING, OR FAILURE

OF A GLOBAL POSITIONING SYSTEM (GPS)

I. Introduction

A variety of Global Positioning System (GPS) receivers and Inertial Navigation Sys-

tems (INS) are installed on military aircraft. The GPS receives information from orbiting

satellites and calculates estimates of the position and velocity of the aircraft. The INS

detects inertial motion of the aircraft and calculates its own estimates of aircraft position

and velocity. The GPS and INS are integrated to form a system that is more accurate and

reliable than each of these systems by itself. Additional measurements from ground based

I'a in deteining aircraft position. The transponder bascd

system is referred to as the Range/Range--Rate System (RRS). The combination of the

GPS, INS, and RIS form the Navigation Reference System (NRS) whose primary function

is to assist the pilot in navigating the aircraft. An important note is that the RRS is often

used on test ranges to reconstruct flight paths over the range. It is not desired to limit the

applications of this thesis to test aircraft, so it is assumed that the RRS represents any

one of many ground-based transponder systems used on current military aircraft.

1.1 Background

Research is being done by the Central Inertial Guidance Test Facility (CIGTF),

6585th Test Group, Air Fbrce Systems Command (AFSC), Ilolloman AFB, NM to deter-

mine the vulnerability of the GPS to jamming and spoofing. Jamming is nothing more

than bombarding the UPS receiver with electronic noise. Figure 1.1 illustrates jamming

as a broad band of noise directed at the GPS receiver. There is no intent to mislead the

GPS receiver with jamming, but rather to prevent it from receiving the desired satellite

information. Spoofing is more complex and harder to detect. The goal of spoofing is to

mimic the signal sent from the satellite to the UPS receiver but with rminor changes to the

signal. These minor changes will cause the GPS to calculate erroneous estimates and draw
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the aircraft away from its desired destination. Spoofing is shown in Figure 1.1. as a directed

signal from a ground--based platform aimed at a particular target. An airborne platform

for the spoofer would be more effective against aircrat with directional GPS antennas

capable of pointing away from a ground-based spoofer. Jamming and spoofing constitute

two of the three failures that will be addressed in this thesis. A third failure that can affect

the performance of the GPS is the loso of a pseudorange input to the receiver. Failures

caused by losing a CPS pseudorange may look similar to spoofing or jamming, but it is

important to identify which of the three failures has occurred.

". . . . .... ........E ne.

Figure 1.1. Jamming and Spoofing

1.2 Pvvblem Definition

The primary goal of this thesis will be to develop a failure detection and isolation

(FDI) system that will identify GPS failures as described above. This FDJ system will

be based on techniques discussed in the literature review. The follow-on goal will be to

develop an adaptive system whfich can correct for a failure that has been detected and

isolated. The NRS is to retain good performance as a result of correctionLs which are

typically used in a feedback configuration.

1-2 _



1.3 Scope

Two types of failures will be considered. Figure 1.2 depicts the two types of fail-

ures as a jump or a ramp. A jump failure results in a corrupted signal with a different

magnitude than the desired signal and occurs almost instantaneously in time. Some FDI

algorithms assume the magnitude of this jump is known but it is more realistic to assume

the magnitude is unknown and important for the FDI system to determine. A ramp fail-

ure increases more gradually than a jump. The deceiving signal is constantly increasing

away from the desired signal at an unknown rate. The thresholds and delay shown will be

discussed in the literature review. The rate of increase of the ramp and magnitude of the

jump will be varied for different studies.

Although the failure algorithms discussed in this thesis could apply to s-, stems other

than the GPS, no attempt will be made to induce failures into the INS or RRS, as the

primary focus will be on the GPS only. Criteria for completion of the research are presented

in Section 1.6.

Corrupted Signal

Jlump Failure Threshold

Desired Signal

Time

Dcceiving Signal - - _

Ramp Delay -.. Failure ThresholdS...................................... ................ ...-" = " .................................. ............... . .

Desired Signal

Figure 1.2. Types of Failures
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1.4 Assumptions and Systcm Description

The list that follows helps describe the scenario chosen for this thesis and the simpli-

fying assumptions that were adopted. The impact caused by these assumptions may not

be apparent without knowing the context in which they were applied, so references are

listed to help the reader see their significance.

1. The NRS will be mounted on a computer-simulated aircraft that is capable of high

dynamic maneuvers analogous to a military fighter jet. Actual flight tests will not

be performed, but a two-hour flight profile as shown in Figure C.1 will be simulated

on a computer. This profile is represented by the latitude, longitude, and altitude of

the aircraft.

2. A typical NRS configuration will be used as shown by a block diagramr representa-

tion in Figure 1.3. Error states are used as the basis of the filter design model, wad

difference measurements are provided to a Kalman filter by the GPS, INS, and RR.S.

The Kalman filter generates error state estimates used to correct the original INS

states, resulting in refined estimates of latitude, longitude, and altitude. There are

fourteen measurements available to the filter, including four satellite pseudoranges,

six transponder ranges, velo "ity in 3 axes via Doppler aiding and altitude from the

barometric altimeter. Chapter III provides a detailed description of these measure-

ment sources. Residuals are sent from the Kalman filter to the FDI system and

corrections can be fed back to the filter. The iNS is inherentiy unstable in the alti-

tude channel and receives stability aiding from a barometric altimeter (l:p. 83). A

sampling period of two seconds (sec) was chosen for all the measurements. Previous

AFIT research (23, 26, 27) used update periods ranging from two to ten seconds.

The slower sampling periods were typically chosen to speed up the simulations which

took several days to run. This thesis used truth and filter iimodels with fewer states

resulting in shorter simulations so a higher sampling period was feasible. However,

data, files were used to store several values at each sample time and these files became

unmianageable with sample periods below two seconds. A few simulations were also
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conducted with a one second sampling period to ensure that no significant losses

occurred in the filter and FDI performance.

Corrected
Error Siates

INS

I Altitude
Aiding Ero State

rBaro Altimeter es

Kalman Residuals
Error States Filter

___ FDIEr-,, --,t-----

GPS rError States Corection- k-4-

Figure 1.3. NRS Block Diagram

3. The NRS will be modeled using differential equations that describe the physi;cal

rolationships between the real world and the NRS electronics. The model will be

based on error states rather than actual states because error states will provide more

accurate estimates of position and velocity (2). Research at CIGTF is based on a

Litton LN-93 model for the INS (9), a generic GP3 model (23), and a simplified

RRS model (23). The models used for this thesis are fully described in Chapter I11.

4. Failures will be assumed additive rather than multiplicative, allowing them to be

represented as an additional term in the equations describing the measurements from

the GPS rather than changes in the dynamics model. This assumption simplifies the

problem significantly without a loss of realism. Finally, it will be assumed tha'
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only one failure can occur at a time and that xnultiplo failures are uninodeled. See

Sectiomi 1.6.1 and 3.4.

5. Computer simulations will be run using a program called Multimode Simulation for

Optimal Filter Evaluation (MSOFE) (22). MSOIFE is specifically used to provide

analysis of designs involving Kalman filters. A conxplete analysis, short of actual test

flights, is possible using Monte Carlo run simulations with MSOFE. The flight profile

will be generated using a computer program called PROFGEN (21). PRIOFGEN

takes user input commands that describe aircraft maneuvers and produces computer-

compatible data which is fed to MSOFE for the simulations.

6. The state dynamics matrix F is considered piecewise constant between sample storage

times of two seconds. The discretization process in Matrix, (S) takes this matrix and

uses an 8th order Pads approximation for the matrix exponential EXP(FAt). See

Sections 2.2.2 and 4.1.

7. The measurements are assumed sufficiently uncorrelated so the ott-diagonal terms

of the measurement noise matrix, R, are negligible and can be set to zero. The

residual covariance matrix A is assumed nearly diagonal (or at least dominated by

its diagonal terms) based on the relationship:

A(j) = H(t,)P(ty)H11(t) + H (1.1)

where Rt is assumed stationary because it has very small variations throughout the

simulation. Although a diagonal R does not ensure a diagonal A, Equation (1.1)

indicates that observation of the diagonal terms of A will provide insights into the

condition of the measurements.

8. The simulation and post-processing software (MSOFE and Matrixx) are coded to

run in double precision in order to handle large disparities in various Kalman filter

values.

9. MSOFE simulations for filter tuning are performed using 10-run Monte Carlo anal-

yses with statistical values averaged over the 10 runs. Single-run Monte Carlo sire-
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ulations are used when testing the failure detection algorithm and will be coipared

with multi-run results to ensure the single run is not unusual.

10. Failure thresholds will be determined empirically based on simulation results in var-

ious situations. See Section 2.3.3.

11. Taylor series truncated to first order will be used for linearizing nonlinear equations.

Perturbations about some nominal point will be established in each case. See Scetions

2.2.1, 3.3.2.2 and 3.3.3.2.

12. The FDI algorithm will only view the data within a. set window of time in order to

avoid a growing set of hypotheses, as discussed later in Section 1.5.3. The size of the

window will be determined empirically based on simulation results and the window

will slide in time to cover all the data in the simulation. For example, a ten-sample

window would have new data added to the end of the window and simultaneously

have old data deleted from the beginning of the window. Additionally, the failure

is assumed to occur at the beginning of .he ViI.dow to simplify calulations. The

consequence of this simplification is a delay in detecting the failure caused by waiting

for the failure to reach the beginning of the window, as discussed in Section 2.3.1.

13. A Doppler system is available to provide velocity aiding to the INS. The measure-

ments from the Doppler are ideal and tell the filter the exact error between the

filter state and the truth state. This ideal situation was assumed to allow direct

comparison of results against those obtained in previous AFIT theses. See Section

3.3.1.3.

1.5 Literature Review

This section contains a review of literature pertaining to four FDI techniques with

specific interest on their application to the integrated NRS described in Section 1.4. More

details on this NRS can be found in a variety of sources, including Air Force Institute

of Technology (AFIT) theses (23, 27). References made to the Kalman filter and EDI

system will directly apply to the components shown in Figure 1.3. Kalman filter theory
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is presented by Maybeck (13). The literature review conclusion will discuss the validity of

each technique for use in the thesis research.

1.5.1 Simpic Error Dctcction. A simple method for error detection is to monitor

the errors in the position and velocity calculations. A failure has occurred if these errors

exceed an established failure threshold, as shown in Figure 1.2. The problem with this

method is that the desired values of true position and velocity are not known, so it is

not possible to determine the inaccuracy of the calculations. An alternative is to use the

Kalman filter to provide a statistic known as code loop pseudorange tracking error which

is related to the desired position through differential equations (2 4:pp. 1460-1461). The

tracking error is sent to the FDI system for comparison against a failure level. The failure

level will be determined based on past experience, flight tests, and most commonly through

computer-generated Monte Carlo simulations or covariance analyses (ll:pp. 102-106). If

the code loop error for a given satellite is larger than the failure level, the GPS is considered

to.. fi•.d or lost wiirthcAnnnl soted th that satellite and the CPS will

no longer use information from this channel until the satellite has regained lock.

1.5.2 Direct and Analytic Redundancy. One of the simplest and most reliable fail-

ure detection techniques is the use of redundant elements for voting. Given a system with

triple redundancy, an algorithm can be easily written that will compare the outputs of

each element, allowing them to vote on the condition of the other elements. Simply stated,

it two ot the e.e.n. s agree ou Utn airtralCi pe0ositiofLnI 01tt. UIte hLLIIU elt:llttuU pIVIUcS a

totally different value, the latter is considered inadequate to provide accurate information

and is removed from the system. Once the third element is removed from the system, the

algorithm is unable to isolate a failure. If the two remaining elements disagree, a failure

has been detected but not isolated and both elements will have to be removed from the

system or the system performance will be degraded. The major disadvantage of direct

redundancy is the need for redundant hardware (5 :pp. 1-2).

A more sophisticated approach uses analytic redundancy. By using the physical and

dynamic relationships between instruments on an aircraft, it is possible to generate mul-

tiple sources of the same information mathematically. These sources are used by the F1)1
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structure ihrough voting techniques. Analytic redundancy avoids the need for excessive

hardware, because each instrument is required for specific miission requiremncts. The sur-

plus of information is also used to provide isolation of the failure without the need for

triple redundancy (5 :pp. 3-7).

1.5.3 Multipl Gcncralizcd Likelihood Ratio Testing. In some situations direct re-

dundancy is not practical. An alternative is to use a Kalman filter as shown in Figure 1.3

to compensate for failures in the NRS and provide accurate cstimates of the position and

velocity. Figure 1.4 shows how the sensor (GPS, INS, or R.RS), the Kalman filter, and the

FDI block of Figure 1.3 interact. Three hypotheses are considered with H0, IH, and 112,

representing no failure, jump failure and ramp failure respectively. The Kalmanii filter is

designed based on H,, and two matching filters are designed based on H1 and J12 (29).

When considering Hi and H2, design parameters within the matching filters determine

what type of failure is being matched, but the magnitude of the jump and rate of the

op•wp do not gave. to 1,.predctcrmined and are estimate-d by tahe C lg el-rithni. The

matching filters monitor the residuals provided by the Kahman filter, and each matching

filter computes a generalized likelihood ratio (CLII). The GLR's are indications of which

hypothesis is most correct. The GLR's use maximum likelihood estimates (MLE) and are

compared through test logic to detect and isolate f-ailures. A corrective signal can be fed

back to the Kalman filter for adaptation to the failure. In many cases, simply adding or

subtracting a bias to the sensor allows the system to continue operation without losing the

sensor in question. One advantage of the GLR. test over other FDI algorithms is that prior

knowledge of the magnitude of the failure is not necessary. Further detail on GLR's and

MLE's are presented by Willsky and Jones (30, 31).

The simple hypothe-ses for failure and no--fail conditions may not provide the ro--

bustness needed to detect and adapt to certain failures. Detection of ramp failures is

particularly difficult when the ramp rate varies significantly. Figure 1.2 shows the time

delay involved in detecting ramp failures. This delay occurs because the deceiving signal

is slowly moving away from the desired signal and takes more time to cross the failure

threshold. By adding filters designed to inatch the ramp failure, these loniger delays can
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be avoided. It is also desirable to design the filter based on the time of the failure. If the

filter is customized to look for a failure at a specific instant in time, then it has a better

chance of good detection. This idea results in a very large bank of filters for long periods

of time. The disadvantage of adding filters is the increase in computations required for

multiple filters. A solution to this problem uses a set number of filters over a window of

time. The number of filters remains constant, and the performance of the EDI system is

often maintained (31:pp. 6U6-6118). The justification for using siiding windows is discussed

by Willsky (3 1:pp. 604-605).

1.5.4 Chi-Squarc TRsting. Another FDI method based on residual monitoring is

a chi-square test which is similar to GLR testing in that it calculates a random variable

x(k) based on the filter outputs. One primanry difference between these two algorithms is

that GLPR tests are functions of the dynamics model and chi-,j.:,tua.re tests are not, as shown

mathematically in Section 2.3. A second major difference is that chi-squ-.aro tests do not

try to match the failure and only have one hypothesis, making it a binary test for fail/no-

fail. Without the ability to distinguish between types of failures, the chi -square test is not
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good for isolation. However, chi-square testing is easy to implenient, runs quickly, and can

provide the first level of detection in a multi-level FDI scheme.

1.5.5 Multiple Model Adaptive Estimation. A final FDI technique for discussion is

the use of multiple models that represent the dynamics of the aircraft under a variety of

conditions. Although this technique is analogous to multiple GLR testing in many ways,

it differs in its structure and decision making process. Unlike the multiple GLR testing

which modeled a variety of failures using matching filters, the multiple model adaptive

estimation (MMAE) technique models the dynamic nature of the aircraft and its sensors

to represent their behavior in the presence of a failure. Figure 1.5 shows that a separate

Kalman filter is designed for each failure condition, and the residuals are used to determine

which filter best models the aircraft and its sensors at the Lurrent time. The Kalman

filter for the jump or ramp might actually consist of many filters designed for various

magnitudes and slopes. A probability of accuracy ranging from zero to one is computed
for.eachier and tiplied b the filter estimnates of position and velocity to weight themfor each 1 1,e 1n mu uip by it_

appropriately. The probability-weighted estimates are added together i , form blended

estimates. This blending allows for partial failures in a sensor or combinations of failure

types. A probability of one indicates that a filter is 100% accurate in its modeling and will

completely determine the final blended estimates. A probability of zero indicates that a

fiter is completely inaccurate in its modeling and will not affect the blended estimates. The

probability weighting computation block in Figure 1.5 represents the FDI block in Figure

1.3, and the multiple Kalman filters are in place of the single filter. MMAE is described in

detail by Brown and Hwang (3) and is extensively used in several AFIT theses concerning

stochastic estimation and control (7, 16, 17, 20, 28). An important aspect presented in

these theses is the use of multiple model adaptive control (MMAC) for system stability

and failure correction.

1.5.6 Litetriture Review Conclusion. The simple error detection presented in Sec-

tion 1.5.1 would normally be effective for detecting failures, but the tracking errors in the

code loop pseudorange caused by jamming or spooling are small compared to other intrin-
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sic errors in the GPS. The performance of the GPS would be degraded, but the failures

would not be detectable with this FDI technique (4).

Direct redundancy techniques are not feasible because multiple GPS receivers on a

single aircraft are not practical. It would also be very expensive to support extra satellites

in space designed to provide redundancy. The concept of analytic redundancy is inherent to

the NR.S design. The GPS receiver, INS measuremeitt unit, transponders, and barometric

altimeter are sensors which are mathematically related to generate multiple sources of tile

same information.

Multiple GLR testing and MMAE are prime candidates for the FD1 system. Both

of these techniques possess the versatility needed for the complex NRS, but the major
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difference is the type of multiple filters required by each technique. Multiple GLR testing

uses a bank of matching filters that are somewhat less complicated than the bank of Kalmar

filters used in MMAE. Both techniques were considered as final choices for the FDI system

design and the GLR test was chosen. Additionally, a chi-square test is investigated to see if

it can provide information in conjunction with the GLR algorithm. This leads to a. multi-

level FDI scheme in which the chi-square tests provides accurate and quick detection, while

the GLR algorithm emphasizes isolation of the failure.

1.6 Methodology

The three main steps of the research approach are explained in Sections 1.6.1, 1.6.2

and 1.6.3. Steps one and two will satisfy the primary goal of the thesis, while step three is

aimed at the follow-on goal included as a recommendation for future research.

1.6.1 Prelihminary Studies. As mentioned in the literature review, multiple GLR

testing has the advantage of needing only one Kalman filter, as compared to MMAE which

requires a bank of such filters in parallel. Based on assumption 4, a simplified GLR test

as formulated by Willsky (31) can be used under the stipulation that the failures must be

additive in nature. This assumption may not be valid in computer simulated tests, or more

importantly, in flight tests. Therefore, it is crucial that a preliminary study be performed

on the GLR technique to verify its usefulness in this thesis.

A basic satellite orbit estimation problem can quickly test the G4lt algorithm. The

orbit problem is clearly defined by Maybeck (14:pp. 46--48) with range measured in radius

units and time in time units. This study covers both ramp and jump failures in the range

measurement at different magnitudes and rates, as shown in rrable 1.1 for this example. The

only goals of the example study were detcction and identification of a failure in the range

estimate of the satellite. No effort was made to adapt to any failures. The GLR algorithm

performed favorably, so the multiple GCIt testing •oncept was used rather than an MMAE

configuration, No preliminary study was developed to test the MMAE technique.
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Table 1.1. Orbit Runs

Run Failure Type Magnitude or Rate-

1 None N/A
2 Jump 0.03 radius units

-33 Jump 0.5 radius units

4 Ramp 0.75 radius units/time unit
5 Ramp L0 radius units/time unit

1.6.2 System Tests. With the FDI technique chosen in the preliminary study, ex-

tensive system tests were performed on the NRS. The steps in these tests include:

1. Completely define the models for the GPS, INS, and LtRS based on prior research

by Negast, Snodgrass, Stacey (23, 26, 27).

2. Refine the FORTRAN code which represents these models and execute it with

MSOFE.

3. Write computer code that will take the outputs of the MSOFE simulation and run

the multiple GLR test algorithm.

4. Perform multiple simulations accounting for various failures and analyze the results.

5. Modify the design to get improved performance and return to step 2.

1.6.3 Adaptive Techniques. As mentioned, the follow-on goal is to determine cor-

rective feedback based on the failure identification. This corrective feedback will improve

the ability of the NRS to adapt to failures or uncertainties in the modeling of the NRS. A

variety of techniques are available and some ideas are discussed in Chapter V even though

time constraints prevented research into this area.

1.6.4 Stopping Criteria. There are three main criteria for termination that coincide

with the three maia steps iii the research approach.

1. In order to prevent excessive time being spent on the preliminary study and jeop-

ardizing the overall research effort, a suspense was placed on the pursuit of a work-

ing algorithm for GLR testing. If an adequate failure identification algorithm using
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GLR testing did not work, then multiple GLR tests would be abandoned and MMAE

would be pursued for the remainder of the thesis research. The GLR algorithm was

successful in the preliminary studies and was pursued throughout the research.

2. WiLh one of the FDJ techniques fully developed, several factors will determine when

the system tests are complete.

(a) The design for the basic integrated NIRS in a benign environment must provide

accurate positions and velocities of the aircraft. Specifically, the NRS must

determine the aircraft's latitude and longitude with a la accuracy of 13 feet (ft)

horizontal and 40 ft vertical. The lo, accuracies for velocity are 0.1 ft/second

(fps) in the north and east directions, and 0.4 fps vertically.

(b) The FDI algorithm must be able to identify failures consistently. This criterion

applies to all types of failures and variations in the magnitudes and rates of

these failures. If this goal were not reached for certain failure types, then a.

determination would be made either to continue work on these failure types

or to pursue adaptive techniques for the failures that have been accurately

identified. The decision was made to focus on identification.

3. Adaptive techniques strive to meet two goals. First, stability of the NRS must be

accomplished. Stability implies that the errors in the NRS estimates of position and

velocity are not growing unbounded as time goes on. The second goal is to achieve

the same accuracies listed in 2(a) above.

1.7 Overview of Thesis

Chapter I1 presents the detailed theory used in the research. Kalman filter theory is

introduced with special attention on discretizing the dynamics of the sampled data Kalman

filter. The basics of the FDI algorithms are discussed, including the equations implemented

for the GLR and chi-square tests. Finally, the methods used for selecting thresholds are

presented.

Chapter III fully describes the navigation systemt's parameters and operational details

through an overall system description. Models for the NItS system to include the INS, GPS
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and RRS are defined in detail. The failure models used in the simulations and the GLR

algorithm are also introduced.

Results of the work done are shown in Chapter IV. The reduced order Kalman filter

is analyzed, and a discussion of the FMI performance is presented. Chapter V summarizes

the research through conclusions and recommendations.
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11. Kalman Filtering and Failure Detection

2.1 Overview

This chapter presents the fundamental theory for application of a Kalman filter

to the navigation problem. Basic filter equations will be presented for continuous-time

dynamics followed by a discretization process to convert the filter for processing by the

GLR algorithm. The equations for the GLR test will then show how the failure detection

is accomplished. Threshold selection will be discussed along with tradeoffs in tuning the

filter.

2.2 The Extended Kalman Filter

An extended Kalman filter (EKF) is chosen to provide state estimates depicting the

dynamics of the NRS components. The EKF allows for nonlinear, time-varying dynamics

and measurement vectors as found in this navigation problem. These vectors are linearized

through approximation techniques about a nominal trajectory to form a linearized Kalman

filter (LKF). The LKF is the basis for the EKF, which is found by linearizing about the

dpdated state estimate rather than a nominal trajectory.

2.2.1 The Sampled Data Kalman Filter. Let the sy:-tem model be expressed as a
:•tate equation of the form

o(t) = f[x(t),tj + G(t)w(t) 
(2.1)

where the state dynamics vector f[x(t), t] is a nonlinear function of the state vector x(t)

and time t. Let the process noise input matrix G(I) = I and w(t) be a white Gaussian

uolse with mean:

m, = E {w(t)} = 0 (2.2)

and noise strength Q(t) defined by:

F {w(t)w"'(t + r)} = Q(t)6(1 ) (2.3)
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Incorporate measurements z(t1) into the filter at discrete times and define them as a non-

linear function of the state vector and time:

z(ti) = h[x(ti), ti] + v(t2 ) (2.4)

where v(ti) is a zero-mean white Gaussian. noise of covariance R(ti) defined by:

E {v(ti)v(t)} = R(t4) for ti = zj (2.5){ 0 for ti 0tj

and h[x(ti), ti] is the nonlinear observation vector. The LKF is based on perturbation states

about a nominal state trajectory x,(t) satisfying xn(to) = xo and

k. W)= f[x.(t), t] (2.6)

Wihere f xn(•t), J is shown in Equation (2.1). The measuremerts are also based on the

nominal states and defined as:

z,(t,) = h[x,(t,),t,] (2.7)

The perturbation states are found by subtracting the nominal states in Equation (2.6)

from the original states in Equation (2.1):

[1:k(t) - 5,(t)] = 4[x(t), ] - f{x(t), t] + G(t)w(t) (2.8)

Equation (2.8) is approximated to first order through a truncated Taylor series expansion:

,x(t) = F [t; x(t)] 6x,(t) + Gt(t)w(t) (2.9)

where Sx(t) are the perturbation states. The definitions for G(t) and w(t) are unchanged

and the new linearized dynamics matrix F[t; xQ(t)] is found by taking partial derivatives of

flx(t), t] with respect to x(t) and evaluated at the nominal values for the trajectory x,,(t) :

=[ ;Of(t)]- =ax(t), t] (2.10)
Ox x=xý(t)
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The discrete-time measurements are similarly approximated to first order and in the per-

turbed form:

z(t,) = H [t,; x(t,)] 6x.(t) + v(t,) (2.11)

and the same linearization process is used for the measurement matrix H[ti;x,(t1 )], result-

ing in:

H[ti;x,,(t,)] = &h[x(t4), 4j (2.12)
Ox X x(ti)

The LKF in this thesis generates error state estimates 6x(t) which can be added to the

nominal states to provide whole states estimates k(t) in the form.:

k(t) x.(t) + &(t) (2.13)

The EKF will now be formed by linearizing about the state estimate R rather than

the nominal trajectory xn. The following equations use the notation t1ti to represent

the time history of a given variable conditioned on the measurements taken through the

time interval [tj,ti+I). Also, t- represents the value after propagation but prior to the

measurement update and tt corresponds to the value after the measurement update. The

state estimates and covariance values P(t/ti) are propagated from ti to ti+4 by solving the

following differential equations:

x(t/ti) = f[*(t/ii), t] (2.14)

P(t/t,) = F[t;*(t/ti)]P(t/t1 ) + P(t/t,)FT[t;i(t/tJ)] + G(t)Q(t)GT(t) (2.15)

where

F[t;*(t/t,)] = Of[x(t), t] (2.16)

and initial conditions are given by:

/ = (2.17)

P(t/ti,) = P(t+) (2.18)
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The discrete-time measurements are processed in the EKF through update equations:

K(ti) = P(t-)HnT [ti; k(t;i)] {H[ti;R(tT)IP(t)HnT[ti;*(tT)] + R(Qj,} (2.19)

:k(tý-) R(ty) + K(t,) {Iz - h[k(ty), ti} (2.20)

P(tt) - P(ty) - K(t,)H[t,;kc(t-)]P(t7) (2.21)

where

H(t,) = H[ti;k(ty-)]- Oh[x(ti), t]" (2.22)
ax x=*(t7)

and K(ti) is the discrete-time Kalman filter gain. Note that, for the EKF, the measurement

and dynamics vecotrs are calculated about the last state estimate i(t7-) rather than the

nominal traj.2ctory used by a simple linearized Kalman filter.

2.2.2 The Discrete-Time Kalman Fiter. In order to utilize the filter outputs in

the GLR algorithm, it is necessary to discretize the state dynamics matrix into a state

transition matrix (STM), 4(ti, ti- 1). All other quantities of interest such as K and H are

already in discrete form. The STM must satisfy the following differential equation and

initial condition (13):
d[-P(t, ti_i)]/dt = F(t),I•(t, t,_i) (2.23)

I (,_1)t_.) = 1 (2.24)

Defining At = ti - ti-1 and solving with F assumed constant over At (see assumption 6)

leads to:

C t,,t,_) = eFAt (2.25)

The state equation can now be written in the discrete form

tx(t,) = ,(t,, t,_,)6x(ti_1 ) + Gd(ti-,)Wd(t,-,) (2.26)

where Gd and Wd are discrete-time representations of C and w defined earlier.
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2.3 Failure Detection

This section will present the theory behind GLR and chi-square testing for the

purpose of failure detection. Given the Kalman filter developed in Sections 2.1 and 2.2, an

algorithm can be used to observe chaages in the residuals. If the changes are significant,

they will represent failures in the system by causing the GLR or chi--square value to exceed

a threshold. Windowing will be applied as discussed in Chapter 1.

2.3.1 GLR Equations. The primary goal is to define a likelihood function l(ti, 0)

that, when compared to a threshold, will identify the onset of a failure such as jamming

or spoofing. Two hypotheses are established with a Kalman filter based Cn Ho (no failure)

and matching filters based on H, (a failure has occurred). The Kalman filter state equation

from Section 2.2 is in the discrete form

6x°(ti) = *(t,,ti- 1)6x 0 (tj-.) + Gd(tt-.)wd(ti_1 ) (2.27)

with discrete measurcments described by

6z°(t,) = H(t,)x°(t,) + v(t,) (2.28)

The matching filters will not provide state estimation but are designed for failure detection

and will have the form

6x'(ti) =,(t,,t..)6x 1 (•_) 1 Ga(ti_1 )wd(ti_,) (2.29)

and

6z 1 (ti) = H(ti)6x'(t3 ) + v(ti) + d(t,)n(ti, 9)v (2.30)

where

d(ti) = failure vector
n(ti, 0) failure function

v unknown size of the failure

0 = unknown time of the failure
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Comparison of Equations (2.28) and (2.30) shows that a matching filter can assume a

failure in the system by modeling it as some variation in the actual measurement beyond

the variations caused by dynamics of the system. Although the failure is modeled as a

bias on the measurement, this model can also represent changes in the states caused by

real world anomalies. Further definition of the new failure quantities in Equation (2.30)

will show how the failures are modeled in the matching filter. The failure vector d(1,) is

r--by-1 where r is the number of measurements. The l's in the failure vector indicate which

measurement devices are assumed to be induced with a failure and the other elements of

d(ti) are zero. The failure function n(tQ,O) tells the matching filter where the failure is

assumed to occur within the window (see assumption 12) and the form of the failure such

as a step function. This allows the generation of a different GLR based on different failure

times. For example, if the failure is assumed to be a unit step and to occur 3 time units

from the front of the window, then 6 = 3 and

n(t 1,O)= 1 for 0>3 (2.31)

= 0 for 0< 3

Finally, the size v simply dictates the unknown magnitude of the failure, whereas n(ti, 0)

and d(ti) are predetermined design parameters. It is important to note that, by not

making v a predetermined constant, it will actually be estimated by the GLR. algorithm as

shown later and can be used to provide corrective feedback. Section 3.4 provides a detailed

discussion of how the failures are modeled using these equations.

In general, the likelihood function or GLR, 1(ti, 0), is based on maximum likelihood

estimates of 0 and P designated as 0 and P. When considering all possible values of 0 within

the window, the GLR with the largest value indicates the presence and time of the failure.

The derivation shown by Riggins (25:pp. 11.2-115) illustrates that in forming l(ti, 6), it

is inherently maximized over v but obtaining an MLE of 0 is based on the definition of

n(ti, 0). With n(t1 , 0)=one for all ti, only a single likelihood function will be calculated

and it will not detect the failure until it reaches the beginning of the window. Therefore,
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the GLR's are based on 0 but not 9. The primary reason for this decision is to reduce

the computation time that increases significantly when calculating several GLR.'s based on

different values of 0.

The Kalman filter residuals y(ti) are shown in Equation (2.20) and are defined by

-(t,) = z, - h[*(t-), ti] (2.32)

and tli- residuals can be expressed for each hypothesis as

H0 : -(ti) = -Q(ti) Hi: -y(t) = -y°(ti) -- m(t, O)v (2.33)

For a Kalman filter successfully tracking the true states, y0 (ti) will appear as zero-mean

white Gaussian noise of covariance A = HP--HT + R. With a failure induced onl the niea-

surements, a. signal of unknown magnitude, m(ti, O)v, will also be present in the residuals

with v defined earlier and m(tj, 9) presented momentarily. It is the goal of the GLR algo-

rithm to identify this signal by recognizing variations in the residuals from their normal

unfailed values. The GLR tests are particularly good at detecting jumps in the residuals

with the key being how closely the matching filters model the actual failures. Section 1.5.4

stated that the GLR algorithm is a function of overall system behavior (4 and H) and

Kalman filter gain K. This is shown mathematically in Equations (2.34) and (2.35) with

the derivation shown by Riggins (25:pp. 112-115). The failure residual offset m(ti,0) is

found through

m(ti, 0) = H(t,)y(ti, 9) + d(t,)n(tj, 9) (2.34)

where the recursive failure quantity y(t4+i, 0) is given by

y(t+i, 0) = 41(t, ,t-) [I - K(t,)H(tj)] y(ti, 9) - qk(t,,t)K(t,)d(tj)n(tj, 9) (2.35)

With the failure assumed to occur at the beginning of the window (see assumption 12),

Equations (2.34) and (2.35) can be simplified by setting n(ti, 0)=one for all tj

y(t,+1,0) =Z 6(t,,4-.1) [1- K(t,)H(t)]y(tj,,0)- 4(t,,,)Uii2(t7)d(t,) (2.36)
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m(tQ) = i(t,)y(ti) + d(tf) (2.37)

The consequence of this simplification is a delay in detecting a failure because the failure is

not realized until it reaches the beginning of the window. The combination of the Kalman

filter outputs and the mat-hing filter model will determine the magnitude of the likelihood

function defined as:
l(tj, 0) =sT(t,, oc(,,os,,o) 2.s

1(,9 =S~O,)C 1 (ti, 9)S(t1, 9 (2.38)

where
i

s(ti,,6) E MT(tj, O)A-'(tj)-Y(tj) (2.39)
j=1

i

C(ti, 0) = E mT(tj, 9)A-'(t)m(tj, 0) (2.40)
j=1

given

A(tj) = H(tj)P(t;)HT(tj) + R (2.41)

and the MLE of the unknown magnitude of the failure, v, is found by:

0(tj, 0) - S(t(, 0) (2.42)1 C (ti, 0)

The residual covariance A(tj) and the residuals are combined with Equations (2.34) and

(2.35) or Equations (2.36) and (2.37) to give a linear combination of the residuals S(t4, 0)

IAIsti - al., C~ -N.1j i) defined -;n , quni ()' 40) ( AmN r;ný%ilr r:Ani4 o

rule based on a threshold, c, would be

1(t4,O) >• =c, FAILURE

l(t,,O) < c NO AILURE (2.43)

2.3.2 Chi-Square Equations. A chi-square test will be used and is based on the

Kalman filter residuals -y(tj) which are zero mean and white with known residual covariance
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A(tj). The chi-square random variable x(tk) is given by

k

x(tk)= >9 .(tj)A-i(tj)y(Qj) (2.44)
j=k-N+l

with N being the size of a sliding window. Notice that the system dynamics are not

included in Equation (2.44) and that only one failure hypothesis is available. This agrees

with the discussion in Section 1.5.4 about the simplicity of the chi-square algorithm. A

detection rule based on an established threshold E would be

X(tk) > e 4 FAILURE

x(tk) < c 4 NO FAILURE (2.45)

2.3.3 Threshold Selection and Filter Tuning. All thresholds used in the FDI logic

will be determined empirically. Three major concerns will be considered in selecting final

threshold values. First, the thresholds must be low enough to prevent delays in detecting

failures. Similarly, they r.,ist be low enough to prevent missed alarms caused by GLR or

X values dropping below the threshold while an actual failure is still present. Finally, the

thresholds must be high enough to prevent false alarms caused by variations in the GLR and

X values. These variations may result from aircraft maneuvers or unpredictable changes

in the random measurement noise. If the filter is tuned sufficiently for both good tracking

and enhanced failure detection, then these variatioas or noise floor will be relatively low.

When tuning the Kalman filter, a major tradeoff imust be made to meet the goals

for state estimation and failure detection. Adjusting the process noise and measurement

ncise values to enhance FDI capabilities may degrade state estimation and vice versa.

This can be seen in Equation (2.41) by realizing that reductions in R will cause reductions

in A, resulting in better possible monitoring of the residuals. The consequence is that

reductions in Rt will cause an. increase in q, resulting in a conservatively tuned filter. The

primary goal of the NUS filter is to provide a navigation solution within the operational

specifications listed in Chapter 1. Once this goal is met, the measurement noise for the filter

can be reduced to allow better FDI, while the process noise is increased to maintain good
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tuning of the filter. Observation of the state estimates, measurement residuals and the

residual covariance A(ti) will indicate a point of diminishing returns using this technique.

Once the filter has been tuned via multi-run simulations to provide optimum residual

monitoring without seriously degrading state estimation, single-run simulations will be

used to evaluate actual FDI performance.

2.4 Summary

This chapter provided the theorectical basis for the remaining chapters. The actual

models for the Kalman filter and the system are presented in Chapter III along with the

details of the matching filter design for the GL1l algorithm. Verification of the discretiza-

tion process is shown in Chapter IV. Also included in Chapter IV, are the results obtained

by applying the equations discussed in Chapter II, including the filter performance, FDI

performance and tradeoffs encountered concerning threshold selection and filter tuning.
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III. Navigaiion and Failure Models

3.1 Overview

This chapter describes the models for each of the three navigation systems and the

failure models. An overall system description is given, followed by detailed state and

measurement equations. Finally, the methods used to simulate the various failures are

shown as they apply to the theory in Chapter II.

3.2 Overall System Description

A brief reiteration of the basic elements in the system is helpful for this discus-

sion. The three navigation systems are the GPS, INS, and BRtS. There are 14 measure-

ments provided to the Kalman filter, including four satellite vehicle (SV) pseudoranges, six

transponder ranges, three-axis velocity aiding from a Doppler system and altitude from

the barometric altimeter. A total of 97 error states about nominal values make up the

truth model to represent the real world. A total of 15 error states are used for the Kalman

filter model.

A block diagram depicting the NRS truth and filter models is shown in Figure 3.1

The true aircraft position x is generated by PROFGEN and provided to each navigation

system. The SV positions are generated by ORBIT and combined with the true aircraft

position to obtain pseudoranges for use by the GPS. Each navigation system generates

perturbations from the true range and the final difference measurements are then formed

by subtracting the GPS and RRS measured ranges from their corresponding INS calculated

ranges. The EKF propagates equations that represent the NRS and uses the measurements

to update estimates of the error states. Finally, these estimates are used to correct the

original INS indicated position.

3.3 Model Descriptions

The truth model consists of 41 INS states, 26 RUS states, and 30 CPS states. The'it

filter model consists of 11. INS states, two RItS states, and two GI'S states. The following

sections will provide details and justification for these model selections.
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Figure 3.1. Truth and Filter Model Block Diagram

3.31 NS udloc. Th~izi bt.;ctIVo piest thle truthL andl filter mod~els asedl forth

INS. The INS is a strapped-down wander aximuth system that senses aircraft motion via

gyros and accelerometers and is used as the primary source for navigation. A 93-state

model is presented with specific interest in the 41 states kept for the truth model. The

reduced order filter model is then discussed.

3.3.1.1 The 93-State LN-93 Error Model, The 41 INS states were extracted

from an original 93--State INS model based on the Litton LN-93 error state model which

is described using six categories oi states:

6=[ 6X,T 6x:2 6x.31' hx 4' b,"' hX6  1T (3.1)
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where 6x is a 93 x 1 column vector and:

xx represents the "general" error vector containing 13 position, velocity, attitude,

and vertical channel errors.

6x, consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-

correlated errors, and "trend" states. These states are modeled as first order

Markov processes in the truth (system) model.

6x 3 represents gyro bias errors. These 18 states are modeled as random constants

in the truth model.

fx 4 is composed of the accelerometer bias error states. These 22 states are modeled

in exactly the same manner as the gyro bias states.

fx 5 depicts accelerometer and gyro initial thermal transients. "'he 6 thermal tran-

sient states are first order Markov processes in the system model.

fx 6 models the gyro compliance errors. These 18 error states are modeled as biases

in the system model.

The truth model system state space differential equation is given by:

1 [ Fil Fi1 F13 F14 IF15 F16 6x, wi

6¾ 0 0 0 0 0 0 x (3.2)

6*4 0 0 0 0 0 0 6X4 0

j6 5 j 0 0 0 0 g55 0 6x5 0

6*k6 0 0 0 0 0 0 6x6  0

A full desription of the submatrices for this equation is given in the Litton LN--93 manual

(9).

3.3.1.2 The 41-State INS Error Model. The large itumber o -states in the

LN-93 model results in a truth model that is cumbersome to the simulation software.

Studies by Negast and others have shown that 41 states are sufficient to represent the INS
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truth model accurately (10, 23). With only 41 of the original 93 state- selected for use

in this thesis, the submatrices in Equation (3.2) are reduced signifilýa ,xiy. Appendix A,

Tables A.1 and A.2 show the 41 states chosen for this thesis and Appendix B presents the

equations and state dynamics noise values used in the svbmatrices.

3.3.1.3 INS Measurement Models The two measurements associated with the

INS are the barometric altimeter aiding and the Doppler based velocity aiding. As men-

tioned previously, the altimeter aiding is used to overcome the instability inherent i, the

vertical channel of the INS. The altimeter output is modeled as the sum of the true altitudc:

h,, the total error in the barometric altimeter 6h1 1 , and a random measurement noise v.

Similarly, the INS calculated altitude is the sum of the true altitude and the INS error

in vehicle altitude above the reference ellipsoid, bh. A difference measurement is used to

eliminate the unknown true altitude, ht, resulting in Equation 3.3.

r t ' + , 1 r, , , i -

Lz = [h 1 +- Of.j - Littt -t- JB] - v

S[1]h - [1]6hB + v (3.3)

A perfect Doppler system provides velocity aiding to the INS based on assumption 13. The

Doppler aiding could come from the GPS or a simple radar system. This measurement

source is not particularly significant for most of the thesis, but it does allow the filter to

generate better estimates of the velocity states. A simple model is assumed for the Doppler

measurement. All thiee channels (north, east, and up) are represented by the difference

between thu truth state velocity error, 6V1,, and the filter state velocity error, 6Vi, as shown

in Equation (3.4).

,zi = Vt, - 6W4 where i = x, y, z (3.4)

Although this model seems somewhat unrcalistic in that it provides the filter with an

ideal measurement for velocities, it does not Qkew the performance of the FDI1 algorithm

because these measurements are not used in the FDI calculations. Thi primary reason for

including the Doppler measuremenls was for cor.parison of the filter performance against

pijor AFIT theses (23, 26, 27).
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3.3.1.4 The Reduced 11-State INS Filter Model. The number of states in the

Kalman filter is further reduced from the 41--state truth model. Consideration was given

to magnitudes of the states and their estimability when deciding which states could be

eliminated for the filter. The reduced order filter had to be tuned to compensate for the

eliminated states by adjusting dynamics noise and measurement noise values. Table A.5

shows the l.-states used for the INS filter model and Tables B.10 and B.11 show the final

tuning parameters used in the filter.

34K,Ž' The 26-State RRS Error Model. The Range/Range-Rate System (RRS) nav-

igation aildhg system is modeled using 26 states for six ground-based transponders (23, 27).

The RRS it•nrrogates the transponders collecting the electromagnetic (EM) signals they

ermit. I here signals represent position information used to calculate a navigation solution

wlich sapports the INS. Table A.3 shows the 26 states and their corresponding state num-

ber in the overall 97-state truth model. There are two states common to each transponder

and four which are modeled separately for each transponder.

3.3.2.1 RRS Model Equations. The two common states for the transponders

are a result of errors in user hardware. They appear as bias terms and are modeled as

random constants. Their state equations are given by:

fx, I =[o If Xbr (3.5)

t tJ L J tJ bv J

where

Xbr = range equivalent of interrogator bias
XCbv = velocity equivalent of interrogator bias

The initial conditions for these states were chosen to be consistent with previous AFIT

research (23, 26, 27) and are:
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f br@to) l= ](3.6)
4,19)i 0]

and

Pbr,bv(to) = [ lft 2  c0 ] (3.7)0 1O-4ft2 /see2

The four states which are unique to each transponder represent the error in the surveyed

position (x,y, and z) of the transpori.ers and the atmospheric propagation delay between

the transponder and the receiving aircraft or usei. The position errors are modeled as

random constants and the atmospheric error is represented by a first order Markov process.

The state equations for these error sources are shown below with i used to represent the

various transponders:

ýi I 0 00 0 xi wmvj 0 0 0 1 + W I (3.8)
I 0 0 'i 0 zi w1

J 0 0 0 - :300sec Ra J
The initial conditions for these states were chosen to be consistent with previous AFIT

research (23, 26, 27) and are:

x.,y,z,atnI(io) = 0 (3.9)

25ft 2  0 0 0

P"rzatM(to) 0 25ft 2  0 0 (3.10)
0 0 25ft 2  0

0 0 0 100(PPM)2

and

E {jWc,y,z•atrt(t)} = 0 (3.11)

3-6



0 0 0 0

0 0 0 0
E {wx,y,z,.t,(t)W xgZattn(t + r)} - &(T) (3.12)

0 0 0 0

0 0 0 2&6o-300

withr~tm - 10- 10 ft 2 .

3.3.2.2 RRS Measurement Model. The system description identified measure-

meat sources which included RRS ranges. The RRS measurements indicate the range from

the transponders to the user and Figure 3.2 shows the errors in the true positions. This

measurement is expressed in Equation (3.13) as the sum of the true range, error sources,

aa,, a random measurement noise v.

RRS ± Rt + bR,. + hRb + V (3.13)

whiere

RRS = RRS range measurement, from transponder to user

1R = true range, from transponder to user
6 Ratn = range error due to atmospheric delay
t Rb = error due to equipment bias
v = zero--mean white Gaussian measurement noise

The true range Rt is not actually known, so a difference measurement, 6z must be obtained

using "e range, RINs, from the transponder to the user. This range is not a measurement,

but is cAculated by the INS using Equation (3.14).

N = Y -y", (3.14)
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where Xu and XT represent the user and transponder position vectors in the earth centered

earth fixed (ECEF) frame respectively. Another way to write Equation (3.14) is:

RNS = /(Xu - X'), + (y. - YU)' + (zU - zT)' (3.15)

Figure 3.2 shows that X, and X,. a-e not completely known and have some error. Based on

assumption 11 with perturbations representing tne errors in X, and X,, Equation (3.15)

can be approximated and written in terms of the true range and a truncated first-order

Talyor series:

INS t + RS(X,)
eX T

+ aRI -(XTI-X-•-) -(X , bxooX" (3.16)aRN•X" ,X T,) •Xo

The solution for RINS is found by substituting Equation (3.15) into Equation (3.16) and

evaluating the partial derivatives to get:

RINS [ *xX-[1-]* - [1] .x"by

[RNIIIRINSI J IRINSI J 6

Finally, the difference measurement is given as:

z= Ris- RRRS

[ X, - x,, + Y[ - Y + [Z"_- z -I

- [1] 6R"m - [1] 6 Rb - v (3.18)

3.3.2.3 The Reduced Two-State RRS Filter Model. The same goal of reducing

the number of states in the filter was met with the RRS model. Research at CIGTF has
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Figure 3.2. R.R3 Measurements

shown that retaining only the first two states, which are common to all the transponders,

a•i piu•ue goodfilter --e---- t aie the range and v errors due to

equipment bias and are represented as b Rb in Equation (3.18). Previous AFIT researchers

have kept all 26 states in the filter because state reduction was not a major goal. The

scenario for this thesis requires a filter of few states, so an effort was made to prove that

the two-state filter was adequate for navigation through comparison to the 26-state model

results obtained by Negast (23). Filter tuning included increases in strengths of dynamics

and measurement noises with final values shown in Tables B.10 and B.11.

3.3.3 The 30-State GPS Error Model. The third and final navigation system is

based on EM signals transmitted from orbiting satellites. Although similar in concept

to the RRS, the GPS is modeled somewhat differently. This model has been developed
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through research at AFIT and many of its fundamental concepts arc addressed in a variety

of sources (12, 23, 26, 27). The dynamics and measurement equations for the full 30-state

truth model are presented followed by the reduced two-state filter model. A tabular listing

of the 30-state model is shown in Table A.4 and the two filter states chosen are listed in

Table A.5.

3.3.3.1 GPS Model Equations. There are five types of error sources that are

modeled. The first two states represent the errors in the user clock and are modeled as

follows: I XUCkb _ 0 1 XUcIkb (3.19)
XUclkd, 0 0 XUýIkl*4

where

XUclk6  - range eqiiivalent of user set clock 'ias

XU ClkA, velocity equivalent of user set clock drift

The initial state estimates and covariances for these states were chosen to be consistent.

with previous AFIT research (23, 26, 27) and are:

"U , (tQ) I = [ 0 (3.20)

t Xuc j L uj

and
ndPvcdkb,UczI, (4)=[9.0 XlO•4ft2 0 ](3.21)

0 9.0 X 10lft2 /sec2 I

Because these error sources are a function of the user equipment, they are common

to all the SV's. The remaining four types of errors are unique to each SV, based on

their individual equipment and their position with respect to the user. One SV specific

error source is the code loop error. Although the code loop is part of the user equipment

shared by all the SV's, its error magnitude is relative to each SV. Next is the atmospheric

interference with the EM signals as rdlated to the ionospheric and tropospheric delay in
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the signals propagation. The code loop error, tropospheric delay, and ionospheric delay

are all modeled as first order Markov processes with time constants shown in Equation

(3.22). All three are driven by zero-mean white Gaussian noise with strengths shown in

Equation (3.25).

The fourth error source is due to inaccuracies in the clocks on board the SV's and

the final error source is based on line-of--sight errors between the SV's and the receiver.

The models for these states are shown in Equation (3.22) - (3.25).

6Rat -1 0 0 0 0 0 0 6RWj aVC

6"1 trop 0 1 0 0 0 0 0 Rtrop Wtpop
5000

ro, 0 0 0 0 0 0 ,l?• O

y 0 0 0 0 0 00 + 0

I r- n fl

I Y- 0 00 00 00 b,10

Kzs, 0 0 0 0 0 00 1 6z ] 0 -

(3.22)

with initial covariances given by

0.25ft2 0 0 0 0 0 0 1
0 1.0ft 2  0 0 0 0 0

0 0 1.Oft 2  0 0 0 0

Pops(to) 0 0 0 25ff2  0 0 0 (3.23)

0 0 0 0 25ft2  0 0

9 0 0 0 0 25ft 2  0

0 0 0 0 0 0 25ft

and nleans and noise strengths:

E{w0 v,(t)} = 0 (3.24)
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0.5 0 0 0 0 0 0

0 0.004 0 0 0 0 0

0 0 0.004 0 0 0 0

E {w 0,s(t)w T OS(t + T)) 0 0 0 0 0 0 0 ft 2/scc .6(r) (3.25)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3.3.3.2 GPS Measurement Model. The pseudorange measurements between

the user and the SV's is shown in Figure 3.3 as . This measurement is the sum of the

true range, several error sources and a random noise:

R fl ± Rt +  +Rj + 6Rtrop + 6Ri0,, + 6RS,,, + b&,U, + 1) (3.26)

where

Rops GPS pseudorange measurement, from SV to user

Rt = true range, from SV to user
6Rc2  = range error due to code loop error
1 1Rop - range error due to tropospheric delay

6Rioll = range error due to ionospheric delay

b
1 1 Sclk = range error due to SV clock error
A •) .... -. r�r iao orrnr (lqp tn llspr clock error

v = zero-mean white Gaussian mnasurement noise

Because Rt is not available to the filter, a substitution will be made to eliminate this term

through the same techniques used to solve for the RRS measurement equation. First, the

satellite position vector X, and the user position vector XL, are defined as:

X, y , X - y(3.27)

zu Z31
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Figure 3.3. GPS Measurements

then the pseudorange from the uscýr to the satellites is calculated by the INS as:

iIxU - ... U. (3.28)

An equivalent form for Equation (3.28) is:

.RS = •/(xu X,)2 + (yu -y) + (z-zs)2 (3.29)

Based on assumption 11 with perturbations representing the errors in X_ and X,, Equation

(3.29) can be approximated and written in terms of the true range and a truncated first-

3-13



order Taylor series:

INS = Rt + INS- (XsX, ) • tXS
aX, (XSXu).nom

+ £RINS(XSXU).. Ix• (3-.30)
+ -axu _1(XS X )no- bn

The solution for RINS is found by substituting Equation (3.29) into Equation (3.30) and

evaluating the partial derivatives to get:

SINS = [t_-- x ]yI z•- [7w-lY],bSz

+rf ••+ -]z,+ z. .±z (3.31)
INS I U [!ISý I LNS"I

Finally, the GPS pseudorange difference measurement is given as:

bz= R.INS - RGps

x - hw .6] , - [Y ] -- 1. o. [zs-lzu] 6z

+ [ 17 -Nt .6x, [± S -YuI by, [+zj jz -16z1

- [1] •6It - [1] 6 t,,op - [1] 6Rio,,

- [1] 6Rs01  - [1]6RUo, - v (3.32)

3.3.3.3 The Reduced Two-State GPS Filter Model. Various research efforts

have shown that two states provide a sufficient model for a GPS (10, 23) The primary

argument is that the errors modeled by the other 28 states are sn , when compared to

states one and two which are coininon to all SV's. By adding measurement noise (increasing

R) and retuning the filter, the overall performance of the NRS can be maintained with

a significantly reduced order model. The final noise values are shown in Tables 13.10 and

B.1..
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3.4 Failure Models

This section discusses the methods used to model failures in the MSOFE simulations

and the corresponding modeis used by the FDL algorithm for detection.

3.4.1 Simulation Failure Models. The 10 different types of failures that were mod-

eled are presented with actual values in Table 3.1. A short description of each failure is as

follows:

1. Jamming - Jamming is modeled as a sudden increase or jump in the measurement

noise associated with all four SV's. T his failure is induced in all SV signals because

the jamming is assumed to occur at the receiver, which will affect all four channels

simultaneously. The jamming noise, 1RE, is added to the system model measurements

only, with values shown in Table 3.1. These values represent various levels of jaraming

which result in lower carrier-to-noise ratios, C/No, of the GPS signal and were

calculated using:
RS = K1 B, K 2 i BB,(
A2  (C/No) + (C/N7 ) (333)

where

R5S = jamming noise added to system measurement noise

A = code modulation chip width

C/No = carrier-to-noise ratio

B,= code tracking loop noise bandwidth

BA = one-sided IF bandwidth

K1  code mechanization parameter constant

K2 = code mechanization parameter constant

The theory supporting Equation (3.33) can be found in an article by Martin (12).
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Table 3.1. Failure Types and Models

Run G [ Fail Type (IM ethod I Time Frame Comments

0 1_Baseline No Failure N/A N/A.
1 Heavy Jump in Increase R 2000-4000 sec C/N0 = 15 dB-Itz

Jamming Measurement Noise from 2 to 4000
2 Medium Jump in Increase Rf 2000-4000 sec C/No = 20 dB-Hz

Jamming Measurement Noise from 2 to 500

3 Light Jump in Increase R 2000-4000 sec C/No = 25 dB-Hz
Jamming Measurement Noise from 2 to 30

4 Spoofing Bias on ONE Add bias=7000 2000-4000 sec Causes 1 mi;
Measurement to SV1 position error

5 Spoofing Bias on ONE Add bias=700 2000-4000 sec Causes 500 ft
Measurement to SV1 position error

6 Spoofing Bias on ONE Add bias=700 4000-6000 sec Causes 500 ft
Measurement to SV1 position error

7 Spoofing Bias on ALL Add bias=700 2000-4000 sec Causes small
Measurements to SV1-SV4 position error

8 Spoofing Ramp on ONE Add ramp=2T 1500-6000 sec Causes 1 1/2 miles
Meas rement to SV1 position error

9 Spooling Wimp on ONE Add ramp=lT 2000-3000 sec Causes 700 ft
Measurement to SV1 position error

10 GPS Fail Loss of ONE SVI=0 over 2000-2200 sec Causes complete
Measurement. time frame disruption
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2. Spoofing

(a) Model A - A bias is added to the measurements associated with one or all four

SV's designated SV1-SV4. This bias will be added suddenly in time and the

values chosen represent a variety of spoofers. An intelligent spoofer will have an

accurate estimation of the measurements being received by the aircraft from the

satellites and can discretely add an undetectable bias to these measurements. A

less sophisticated spoofer would have to use a larger bias to ensure effectiveness

in corrupting the measurements while running the risk of being detected. A

simple method was used to determine the amount of bias added to the pseu-

dorange and is illustrated through an example. Assume the spoofer wanted

to pull the aircraft approximately one mile off course in terms of latitude and

longitude. The net distance error would be the magnitude of the change in the

filter computed latitude and longitude error with and without the spoofer:

Distance error = b(69 -
8 x:,poof)P + (boy - boy:spoof))2  (3.34)

where

x:,lpoo: = latitude error with spoofing

•t•,:poof = longitude error with spoofing

The altitude channel is not used to compute the distance error because altitude

information is readily available from other instruments and the goal is to draw

the aircraft off target. Figure C.3 shows the increase in the filter-computed

errors in all three channels and the resulting distance error of approximately

one mile over the time frame of the failure for a bias of 7000 ft on SVI. Only

one of the simulation runs will induce the bias in more than one SV signal. It

is considered unrealistic that a spoofer would be able to identify all four SV's

selected by the GPS receiver consisteutly because the SV's are chosen based on

their geographic relation to the receiver. The spoofer would not only be more

complex, but would require four receiver/transmitters to accomplish this task.

3-17



Finally, simultaneously adding a bias to all four SV measurements would appear

as an increase in the user clock bias error and would be quickly compensated

by the fluter. In contrast, a bias added to only one of the four GPS channels

should cause errors in the navigation solution and degrade filter performance

throughout the time frame of the failure. A single run will be performed to

verify these predictions and show the distinction of these failure types.

(b) Model B - An even more subtle failure would be a ramped value added t tL'

SV measurements. The ramp rates are somewhat arbitrary but with the saý.n

basic idea of slowly drawing the aircraft off course. Slopes of one ft/sec and two

ft/sec are simulated with net position errors of 700 ft aftei 1000 sec and 1. 1/2

miles after 4500 sec, respectively. Simulations were not performed with a ramp

value added to all the measurements as explained above.

3. GPS failure - Represented as a loss of one or all SV measurements and modeled Ly

setting the measurement z=0. The time frame illustrates that the SV will be lost

for a period of time but may be reacquired. Simulations with all four SV signals

removed will not be done, as failing one channel has the same effect of completely

disrupting the filter.

3.4.2 FDI Failure Models. The multiple GLR algorithm allows for various hypothe-

ses based on the types of failures being detected. A different failure model can be formed

for each matching filter to optimize detection and isolation of failures through observa-

tion of the MLE's and GLR's associated with each matching filter. In simpler terms, the

matching filter with the largest GLR is deemed the most correct in finding the failure.

Given a group of different failures, a matching filter could be generated based on each

failure type or a less complex FDI scheme would be to model only the most likely fail-

ures. By selectively choosing a bank of matching filters to cover most of the failures, the

computational burden on the computer running the FDI algorithm can be reduced from

one running an excessive number of filters in parallel. This concept is used in conjunction

with a simple chi--square test to form a two-level FDI scheme. The first level consists of

both the chi-square test and five matching filters to provide initial detection of a failure.
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The second level is used to isolate the failure based on the five GLR outputs alone. This

scheme benefits from the simplicity and reliability of the chi-square test and the flexibility

of the multiple GLR tests.

The failure quantities in Equation (2.30) are specifically defined to represent the

matching filter models. The function n(ti, 0) is equal to one for all ti, which implies that

the failure occurs at the beginning of the window (see assumption 12). The failure vector

d(ti) is defined in general as

SVl

SV2

SV3

SV4

TR1
d(ti) = (3.35)

TR2

TR3

TR4

TR5
TR6

where SVi - SV4 and TR1 - TR6 represent the satellite vehicles and transponders re-

spectively and will have a value of zero or one for this simplified model. Note that the

Doppler and altimeter measurements are not included in these models because their mea-

surement residuals are virtually unaffected by the failures in question and they slow down

the algorithm when included in these equations. The plots of the GLR test using all

14 measurements (Doppler and altimeter included) are not presented because they look

essentially the same as the GLR test using only 10 measurements.

The first four matching filters assume a failure in only one of the four SV's and the

last filter models a failure in all SV's simultaneously, resulting in failure vectors of the

form:
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SV1 SV2 SV3 SV4 SV1-4

1 0 0 0 I1
0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

0 0 0 0 00~/ =, , , or (3.36)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 I0 0

These models should perform well on bias type failures and encounter some delay in de-

tecting ramp type failures. This is expected since the matching filters are designee for

biases and not ramps, but the ramp results will show how well the filters perform on other

types of failures. Further studies could include more complex models specifically designed

to detect ramp failures.

3.5 Summary

TIhi clapter presented the details for both the navigation filter and failure models.

The basis for the measurement models was discussed to help describe the intricacies of

the NRS design. The state and dynamics model descriptions illustrate the high degree

of nonlinearity and time-variance of the system. The reduced order filter models were

presented, including consideration of the critical job of tuning the NRS filter. The methods

used to induce the failures in the simulations were shown along with the models for the

matching filters designed to detect and isolate these failures. Results and analysis of these

simulations are presented in the next chapter.
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IV. Rwsuij:: and Analysis

4.1 Assumption Verification

One of the primary concerns in this refcarch has been to verify assumption 6 pre-

sented in- Chapter I. The GLR algorithm requi F, discretized version of the state dynamics

matrix F which was assumed piecewise constard. ('vr the two--second sample period. All

43 time varying elements of F were carefully scr a'tirized to ensure that they did not change

significantly between samples. Figure C.2(a) shIows the worst case element of F in terms

of time variance over the entire simulation. From this plot it is hard to see if the high

dynamics are being preserved over the sample periodd. Figure C.2(b) provides a closer look

at the changes occurring in this plot during the most dynamic time period. The time scale

in ligare C.2(b) is reduced so that values at every two-second sample are clearly seen.

From this plot it is obvious that the quickly changing nature of the F matrix is preserved

with a sample timye of two seconds, so the discretized STM, 4, based on assumption 6 will

be valid.

4.2 NRS Filter Performance

A variety of simulations were run on MSOFE to determine the final tuning values

chosen for the filter. Observation of state statistics and measurement residuals gave insights

into adjustments of the tuning values necessary to provide good state estimation while

enhancing FDI potential as discussed in Section 2.3.3. The state plots in Appendix D

represent a well tuned filter with the primary concern being to reduce the mean error for

each state. A quick method for evaluating how weil the filter is tuned is to ensure that the

mean-sigma for the state error is bounded by the filter-computed zero±sigma. The FDI

potential is evaluated using the residual plots and the goal is to bound the residual±sigma

by the filter--computed zero-sigma derived from the residual covariance. The baseline

plots shown in Figures D.16-D.20 indicate that further reduction of the measurement

noise covariance, R, would improve the FDI performance based on A = HP-HfT + R.

However, lower values of Rf caused serious degradation of filter tuning for state estimation

performance. It is also unrealistic for 1R to have values below the actual measurement
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device noise variance values. Therefore, a tradeoff was made resulting in final values for Q

and Rt shown in Tables B.10 and B.11.

The 15-state filter performance is compared against the results of the thesis by Negast

(23) and the operational specifications listed in Section 1.6.4. All results are based on 10-

run Monte Carlo simulations with ensemble averaging performed over the 10 runs. Negast

conducted studies on a variety of reduced order filters with some of his results shown in

Table 4.1. The values presented are the temporal averages of the ensemble averages of true

filter estimation errors (lo) for the position, velocity, and attitude errors over the two-hour

flight profile. Both the 97- and 69-state filters were evaluated against a 128-state truth

model defined by Negast. The 15-state filter used in this thesis was evaluated against

the 97-state truth model defined earlier. Although this disparity could slightly skew the

results, a comparison of the filter performance is still worthwhile in demonstrating the

ability of the 15-state filter to provide a good navigation solution.

Table 4.1. Temporal Averages of True Filter Errors (la)

SFilter Lati. [ Longi- T Alti- East fNorth Up 1]East North Azi-
tude tude tude Vel Vel Vel Tilt Tilt muth
(ft) (ft) I (ft) I (fps) (fps) (fps)U (arcs) (arcs) (arcs)

jDesired 1] 13.00 _13.00 140.00 11 0.100 0.100 ]_0.400 1 ' _ 1 _ _

97-NRS] 1.35 2.71 1 5.28 0.014 0.010 0.0451 1.07 1.29 9.74
S69-NRS -3.28 4.21 9.04 0.0330 0.026 1 0.0701] 1.37 2.11 18.42
i TQ W1 n "• n .n o')Q I n07n 11 R I A14ýq1 17.7 II

All the operational specifications were easily met and exceeded as shown in Table

4.1. It is clear from the results that the overall performance of the 15-state NUS filter is

degraded in comparison to the higher order filters. Some of the errors are actually better

for the 15-state filter than for the 69-state filter as a result of either the difference in

truth models or good filter tuning. Investigation into the individual state plots shown in

Appendix D reveals other problems encountered with the 15-state filter. Large variations

in the true system behavior such as high dynamic maneuvers will test the robustness of

the filter. With a reduced order filter like the 15-state NRS, a single sharp turn or altitude

change is easily handled, but several of these maneuvers caused the filter estimation error
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to increase significantly. The flight profile shown in Figure C.1 indicates that problems

may occur between 4800 and 6600 seconds. Analysis of the filter performance verified

that two or three high-g turns in rapid succession provided justification for increasing the

tuning values of certain states in order to enhance tracking. Adaptive tuning techniques

were employed on states one, two, 12 and 14 with upper and lower process noise values

shown in Table B.10. The upper noise values would be employed following a series of quick

turns and the lower noise values would be used again a few hundred seconds after the last

major turn. A study would have to be done with a variety of flight profiles to determine

the optimal conditions for selecting the upper or lower tuning values. The key issue is

that adaptive tuning is required and was implemented for this simplified filter model as

shown in Figures D.1, D.2, D.12 and D.14. Statistics for the other 11 states are plotted in

Appendix D and indicate that all the states were estimable at various degrees of tuning.

State 3 represents the azimuth error and, as anticipated, was difficult to estimate in this

wander-azimuth system. Also, its magnitude is very synan resulting in little or no impact

on the NRS filter performance so fine tuning was not attempted.

Another goal was to verify the validity of the two-state RRS filter model. Although

temporal averageFs were not presented by Negast for his 26-state RRS filter, visual exami-

nation of his plots reveals RRS range bias errors of 0.7 to 1.0 ft in comparison to 6.27 ft of

error with the two-state model. This seemingly large increase had a small effect on overall

filter performance and the two-state model is deemed to be sufficient for most applications.

The major impact is the reduction in computational loading realized by removing 24 states

from the filter.

4.3 FDI Performance

Both the GLR and chi-square FDI algorithms are discussed with run numbers corre-

lating to Table 3.1. Specific concern is given for missed and false alarms and methods for

enhancing failure detection are discussed. Three types of plots are discussed to illustrate

the performance of the FDI algorithms. First, likelihood function plots show the actual

results of the GLII algorithm. Second, a fail flag routine was written to smooth the GLR

plots based on a detection threshold and a parameter called nurnbcrilow. This routine
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assumes there is a failure (fail flag=one) until the GLR value falls below the threshold for

a number of successive samples > number-low, resulting in fail flag=0. The consequence

of a large number-low is that fail flag=one for several samples even after the failure has

been removed. Chi-square plots are also generated for three different window sizes. Tech-

niques employing two fail flag routines with a large and small number-low could help make

quicker decisions in dropping the fail flag. Other decision logic might be used to overcome

problems in detecting certain types of failures, but this thesis focused on a simple scheme

using a single fail flag routine and a single chi-square test for decisions.

4.3.1 Jamming Detection. Three levels of jamming were induced as indicated by

runs one, two and three in Table 3.1. The degradation in the filter performance is di-

rectly related to the amount of jamming noise induced. Selected state plots are shown in

Appendix E to illustrate the effects of heavy jamming on the filter. The filter is able to

reacquire a good estimation of the states quickly following removal of the jamming noise,

demonstrating the ability of the filter to survive a hostile environment. The residual plots

shown in Figures E.4 and E.5 make it clear that simple residual monitoring would be suf-

ficient to detect the jamming when compared with the baseline residuals in Figures D.16

- D.17. Figure E.6 seems to indicate that the transponders are not significantly affected

by the jamming, but even these minor variations from the baseline in Figure D.18 will be

detectable by both the GLR and chi-square algorithms.

The results of the GLR test for heavy jamming are shown in Figures E.7 and E.8

and should be compared to the baseline plot in Figure D.21. The five plots in each figure

represent the GLR's based on the five different matching filters discussed in Section 3.4.2.

As expected, the matching filter assuming a failure in all four satellites provides the best

detection. Figure E.8 shows that with a threshold=120 and a number-low=23, the fail flag

remains up (equal to one) throughout the failure time and missed alarms can be avoided.

The relatively large value for number-low is attributed to the continuous variations in the

residuals resulting from the addition of random noise. These variations prevent the GLR

algorithm from reaching a constant level above the noise floor and the large number-low
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causes an excessive 46-second delay, which is excessive, in determining that the jamming

is removed.

Comparison of Figures D.21 and E.9 show that the chi-square test was very successful

in detecting the jamming. The best choice for the window size is 15 samples in order to

reduce delays in detection and false alarms which are both apparent at the end of the

failure time. A larger window size would only be necessary if the threshold had to be set

so low (for good detection) that it caused false alarms due to the noise floor.

Similar results were obtained with the medium jamming level, as shown in Figure

E.10. Both the GLR and X algorithms are capable of detecting this level of jamming.

Neither algorithm was successful at consistently detecting the light jamming, as shown in

Figure E.11. The main reason the GLR test had difficulties detecting jamming failures is

that the matching filters are designed to isolate a bias failure and the jamming noise is

quite different from a bias. In contrast, the chi-square test is not dependent on a failure

model and is better suited to detect the variations in the residuals caused by jamming.

4-.3.2 Bias Failures. Runs four - six induced bias failures on SV1 only. Figures

F.1 and F.2 show the degradation in the filter throughout the time frame of the failure

resulting from a bias of 7000 ft being added to the ps8ct,.orange of SVi. The GPS residuals

shown in Figure F.3 clearly indicates that a failure begins at 2000 sec and falls off at 4000

sec. Although somewhat masked by the scale of the plot, Figure F.3(b) shows that the

residual values are also large throughout the entire failure time. This is easier to see on the

transponder residuals in Figure F.4. An interesting observation is the significant variation

in the transponder residuals even though no failure was induced on their measurements.

Similarly, all the SV residuals are affected as a result of a failure on SVL only. This

apparent coupling of the measurements is not due to correlation in the real world, but

rather a result caused by the design of the NRS filter. The measurement models are

functions of the error states within the filter and with large variations in these estimated

states, all the measurement residuals are affected. This coupling of the measurements

will have a negative effect on failure isolation. It is also important to recognize the large

spike occurring at approximately 2300 sec, making the presence of the failure seem obvious.
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This was determined to result from a sharp turn by the aircraft which dithered the system,

indicating that FDI decisions should coincide in time with dithering. The significance of

this dither signal will be discussed later.

A typical GLR plot is shown in Figure F.5. The lower plot has been capped off at 200

to allow viewing of the data close to the noise floor. This noise floor is the result of initial

transients, variations in random noise and changes in the aircraft dynamics. A threshold

could be set for quick detection and to prevent any false alarms (recognized as the GLR

value crossing the threshold when no failure is present), bat a missed alarm would result.

The approach would be to run the fail flag routine with numberdlow=two, resulting in a

two-second delay in realizing that the failure is gone, no missed alarms and a detection

time of two seconds. This concept is applied repeatedly throughout the rest of the analysis.

The GLR values for all five matching filters are shown in Figure F.6. Analysis of

this data generates fail flag results shown in Figure F.7. It is reassuring that the best

results are obtained from the matching filter SV1 which assumes a bias failure in SV1.

There is concern for the false alarms in SV2 and SV4. One solution would be to raise the

threshold above the noise floor of both matching filters. Althoagh no increase in detection

delay will occur for this failure, later simulations with ramp failures will suffer fiom raising

the threshold too high and causing delays in detection. A second more desirable method

would be to rely on the chi-square test for detection. Figure F.9 shows favorable chi-

sonare results in terms of clean and quick detection. A window size of 15 samples will give

fast detection (two seconds), no false alarms and less than 20 sec of delay in dropping the

failure condition.

The next problem is to isolate the failure. The chi-square test provides no indication

of which sensor has failed, but the GLR results are much more useful. The GLR for SV1

has a very large value at 2300 sec, which matches the time of the dither discussed earlier,

and this large spike distinguishes it from the other matching filters (see Figure F.6). A

delay of almost 300 sec would exist, which is unacceptable, but clear identification of the

failed sensor is realized based on a second threshold designed to isolate failures. Further

discussion of this idea will be presented in Chapter V.
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The follow-on goal of generating corrective feedback to the Kalman filter was not

pursued extensively, but a quick look at the MLE of v for this run provided some interesting

results. Figure F.8 shows two plots of P with different vertical scales. The actual failure

size was 7000 ft, ar.d closc inspection of these plots reveals that P could provide a crude

estimate of the size of the failure during portions of the failure time. The same problem of

poor performance prior to the dither signal is encountered here, along with disturbances in

P after 3800 sec. The ai.rcraft dynamics (an altitude change at 3800 sec) are speculated to

have caused this disturbance. Continued research into using MLE's for corrective feedback

is encouraged but these values must be checked carefully to ensure they do not adversely

affect the jilter performance by providing erroneous feedback.

Similar results were obtained for run five in which the bias was reduced to 700 ft.

A single GLR plot based on SV1 is shown in Figure F.10 along with its corresponding

faa, flag result. A problem was encountered with missed alarms prior to the dither signal.

Although variations in the threshold value and numberslow could overcome this problem,

these variations would inhibit detection of other types of failures discussed previously. The

same solution to use the chi--square test for detection was available and it was determined

that a threshold=50 would be effective for this failure (see Figure F.11). Other threshold

values would also be acceptable for this failure, but using a threshold=50 coincided with

other results. Final implementation studies could be accomplished to determine the best

thrcshold, value for all types of failures being considered.

In order to verify the influence of dither signals on the FDI algorithms, run six was

conducted with the failure induced during the highly" dynamic time frame from 4000 -

6000 sec. Large variations in the GLR. and X data correlated to quick turns in the flight

profile, as anticipated. The GLIt plot and fail flag based on SV1 are shown in Figures F.12

and F.13 with unfavorable results occurring with number..low=two. In order to prevent

missed alarms, a, numberlow=45 was required. Again, a delay occurred in dropping the

failure condition, but the chi-square test provided the necessary alarm with the same

threshold=50 used ea-'ier. The same technique of detection through the chi-square test

and isolation via the GLR test would work 1. " his failurc.
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The last bias type failure, run eight, assumed that all the SV's would be spoofed

simultaneously. The state plots in Figures F.15 - F.17 show the robustness of the filter to

adapt to this failure. Fewer than ten updates at a two-second sample rate were required

for the filter t ) regain accurate tracking of all states. This coincides with the speculation

in Section 3.4.1 that the filter would attribute this failure to an increase in the user clock

bias. Figure P.18 shows that the failure is quickly detected but the adaptive nature of the

EKF prevents a sustained recognition of the failure. Further simulations were conducted

with various biases and values as low as 50 ft were easily detected by the GLR algorithm.

This failure was not pursued further, for reasons explained in Section 3.4.1.

4,3.3 Ramp Failures. Runs eight and nine refer to ramp type failures of slopes two

and one ft/sec, respectively. The state plots in Figures G.1 and G.2 show the gradually

increasing degradation in the filter performance due to this type of spoofing. The residuals

in Figures G.3 and G.4 indicate that failure detection should be possible, and the spikes

in Figure G.3 highlight the effects of diGteriLi cauted by higt dUynami7c.

The GLR algorithm was somewhat successful in detecting the larger ramp failure=2T

with some delay. Figure 0.5 illustrates that the all five matching filters will cause missed

and false alarms. A closer look at these results is shown in Figure G.6 in which the vertical

scale has been reduced. From this plot the matching filters do not appear to provide quick

or reliable detection. The results of the fail flag routine are shown in Figure G.7 with the

threshold=120 as discussed on page 4-4 and an increase in numberdlow=10. This increase

in numberdlow did not adversely effect previous results on other types of failures other than

the expected delay in dropping the fail flag. The two major problems with these results

are the 356-sec detection delay seen in even the best matching filter, SV1, and the multiple

missed and false alarms seen in the other matching filters. A positive result was the large

spike seen at the time of the dither (2300 sec) that would provide isolation of tie failure

on SV1.

Again, the chi-square test provided better results for detection with the ranip-:2T.

Figure G.8 shows reliable detection, based on a threshold=50, beginning 250 sec after the

failure which occurred at 1500 sec. The 250-sec delay seents excessive, but the failure

4-8



is subtle and the aircraft is spoofed approximately 400 ft at the time of detection. The

chi-square test also dropped the failure more quickly than the GLR test and did not suffer

from the high dynamics between 5000 and 6000 sec.

Results with the ramrp=1T are shown in Figures G.9 - .111. The GLR test was

more reliable for detection, as shown in Figure G.i0, when compared to the ramp=2T

results, but this should be attributed to the lack of dynamics during the failure time

frame. The chi-square test was not as successful with this more subtle failure and suffered

the same delay in detecting the failure as did the GLR. The dither signal is again the key

to detection, and isolation was also possible based on the matching filter results. For this

particular simulation with the dither signal occurring 300 sec after the failure, the aircraft

would only be spoofed approximately 150 ft off course prior to detection. Although these

errors due to detection delay might be acceptable for most missions, it points out the need

to conduct a study on optimal input signals for the purpose of enhancing failure detection

and isolation. Mehra discusses a variety of techniques for determining these optimal inputs

including observation of the systems eigenvalues (18, 19). Some quick and simple methods

for system identification are presented by Zarrop and Goodwin based on minimizing a

scalar function of the information matrix (32). Consideration should also be given to

developing failure models for the matching filters designed to detect ramp failures with the

expectation that detection time will decrease.

4.3.4 Failed GPS. A complete loss of one pseudorange entering the Nl1S filter was

induced, and the degraded performance of the filter is shown in Figure 11.1. The filter loses

track until 3800 sec after the failure is removed, revealing a major liability in the design

of the NRS filter. Figures 11.2 and H.3 show the residuals as excessive and divergent,

indicating that the filter is unable to provide a good navigation solution in the absence

of even one pseudorange (PR). One solution to this problem is, after detecting the loss

of the PR causing the filter divergence, move the filter back in time by recalculating the

Kalman filter equations without tUie PR measurement input. This would prevent the other

measurements (transponders, baro-altimeter, and Doppler) from being affected by the

coupling discussed earlier, and the filter would remain stable. Once the PIt input was
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reacquired, this measurement would be processed by the Kalman filter as before. This

idea was not pursued due to time constraints but is mentioned in the recommendations for

future work. The FDI results are skewed by the filter divergence and the GLR algorithm

goes unstable. Detection of this failure is not a major concern since standard GPS receiver

design would recognize the problem and compensate if possible. Finally, this type of failure

would not be a good tactic for a spoofer, as discussed in Section 3A4.1, but it is comforting

to know that this failure is distinguishable from typical spoofer--induced failures.

4.3.5 Numerical Precision and Modelling. Considerable attention was given to the

numerical precision of the computers running the simulations and the FDI algorithms. In-

vestigation into the matrices passed from MSOFE to Matrix,, revealed a potential problem.

The two rows of the measurement matrix, H, corresponding to states one and two were 10"

larger than many of the other rows, but both computing systems were using double preci-

sion in all their calculations, so there might not be a problem. The positive performance

of both the Kalman filter within MSOFE and the GLR algorithm in Matrix, indic'ated

that everything was fine, but it is possible that their performance could be improved by

performing a similarity transformation on the filter model to scale the states more evenly.

Details for this type of transformation are shown by Maybeck (13:p. 28). Time limitations

prevented this work from being completed.

Another factor affecting the performance of the GLR test is mismodelling even though

the NRS filter was shown to exceed specifications in providing a. navigation solution. The

dependence of the GLR algorithm on the system dynamics makes it susceptible to inaccu-

racies in moidelling, especially when the truth model has 97 states versus the filter model of

only 15 states. A quick study was performed in which both the truth and filter models had

only 15 states to ensure that modelling was not a major factor in the GLR performance.

No noticeable improvement resulted from this study. Detection delays on subtle failures

were not significantly reduced and failure isolation was still not possible prior to the dither

signals. These findings indicated that higher order models for the filter would not improve

FDI performance sufficiently to justify the increase in computational loading required for

a larger filter.
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4.4 Summary

This chapter focussed on the results obtained in the research. A brief discussion

of the piecewise-constant nature of the dynamics matrix and concerns about numerical

precision and modelling indicated that these assumptions were valid. Results on filter

performance were very good and a comparison to past research showed that the reduced

order filter model worked well. Analysis of the FDI performance revealed some positive

results but techniques for enhancing this performance would be necessary prior to final

implementation on actual aircraft. Chapter V offers some suggestions to accomplish this

goal and provides some ideas for future research.
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V. Conclusions and Recommendations

This chapter provides a brief summary of the results, including a possible method

of implementation for the FDI system. Recommendations for future research are also

presented.

5.1 NRS Filter Performance

The 15-state NR.S filter exceeded all operational specifications in its ability to pro-

vide an accurate navigation solution. Although the filter's performance was degraded as

compared to higher order models used in prior research, the state estimates were reliable

and accurate. Increases in tracking errors were experienced following a series of harsh

maneuvers by the aircraft, prompting the use of adaptive tuning techniques on states one,

two, 12 and 14. A simple technique required these states to have lower and upper process

noise values for adaptation.

The reduced order RRS filter mode] provided adequate estimation for the transpon-

ders while significantly decreasing the number of states in the filter from 26 to two. The

importance of this simplification is the reduction in the load on the computer tasked to

run the Kalman filter algorithm. This accomplishment is magnified by the fact that many

of the small aircraft on-board computers in the Air Force inventory lack the capability to

run a Kalman filter with over 60 states and a two-second update rate.

5.2 FDI Performance

The discretization process used on the state transition matrix assumed time invari-

ance over the two-second sample period and was sufficient to generate accurate inputs

for the GLR algorithm. This resulted from the combination of the two-second sampling

period and the 8th order Pad6 approximation for the matrix exponential function. Longer

sample periods or cruder approximation techniques might cause the discretization process

to be degraded, resulting in improper modelling within the GLR algorithm.

A combination of the GLR and chi-square algorithms provided adequate detection

and isolation for most of the failures considered. Heavy and medium jamming levels were
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reliably detected but light jamming was not noticable above the noise floor. Althouglh

jamming detection using the FDI algorithms was desired, many other forms of detection

are available using current electronic warfare techniques. Even more important is the

distinction between the outputs of the GLR matching filters when compared to each other

and also when compared to other types of failures such as spoofing. It is necessary for the

FDI system to recognize the type of failure prior to generating any corrective feedback into

the NRS filter and to alarm the aircraft pilot properly of the hostile environment.

The FDI algorithms performed well for both types of spoofing. Thresholds were

found empirically with substantial tradeoffs required to prevent false and missed alarms.

All bias values were easily detected and isolated using a combination of the chi-square

test for detection and the GLR test for isolation. The chi-square test minimized detection

delay to two sec, eliminated false alarms and minimized the delay in dropping the failure

condition to 20 sec. If the FDI algorithms were attempting to detect failures in a flight

•lti syster rather than a navigation systcm, then these delays. wo bdhe unacceptable,

but for the scenario described in Chapter I, these delays should not cause major problems

in completing mission objectives. Ramp failures presented additional problems for the

chi-square test. The gradual changes in the residuals caused delays in detection with

larger ramp values having delays of about four minutes and small ramp values completely

avoiding detection prior to dithering the filter. These results would not be acceptable for

final implementation.

Two important aspects must be addressed for implementation of a reliable FDI sys-

tem. First, a two-level scheme should be used in which the chi-square test is utilized for

detection and the GLR test provides isolation. It should be realized that both algorithms

use the inverse of the residual covariance, A(ti), in their calculations, so the chi-square

test does not generate much computational overhead assuming the GLII test is already

being conducted. The GLR algorithm does require a significant number of computations

and may interfere with chi-square calculations done by an on-board computer, but the

two-level design allows for priority to be given to the chi-square test for detection while

the GLR test can run on a lower priority for isolation. A study on this idea could provide
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optimal performance of the overall FDI scheme. Nither algorithm could independently

outperform this two-level scheme in terms of detection and isolation.

The second major concern for implementation is whether purposely dithering the

system could enhance FDI performance. Results clearly indicate that harsh aircraft ma-

neuvers enhanced isolation for the GLR test on all failures and detection for the chi-square

test on subtle or small failures. Maybeck discusses the use of probing with the intention

that it "purposely excite certain modes of the system in order to aid the identification of

uncertain parameters" (15:p. 229). One tactic discussed is the use of "S-turns" performed

by the pilot and a simple variation in the flight profile would reveal the usefulness of this

idea. Stratton, Menke and Hanlon looked into continuous and periodic dithering signals

induced through control inputs (6, 20, 28). This would change Equation (2.1) to

x(t) = f[x(t), t,u(t)] + G(t)w(t) (5.1)

where u(t) = control input. A study could be conducted on optimal control inputs for this

navigation system to determine the best choices for this method. Preliminary indications

are that rather large dither signals are required for this system so pilot-induced dithers

would probably work better than automatically induced subliminal probes or automatically

induced nonsubliminal probes that would bournce around the aircraft and its crew.

Comparison of a 15-state filter model against a 15-state truth model showed that

higher order filter models would not significantly enhance FDI performance. Numerical

precision was not considered to cause a major problem in the performance of the Kalman

filter or the FDI algorithm, although rn3caling the states should still be considered.

5.2.1 Corrective Feedback. Although time constraints prevented research into feed-

back techniques designed to correct for failures, some observations can be made. As men-

tioned earlier, adaptive tuning techniques in which Q was increased were employed to

ensure adequate filter performance under normal conditions. This concept could be c-v

tended to enhance filter performance once a failure was detected. The FDI system is i _)w

confronted with a third task beyond that of detection and isolation. Assuming a bias failure

has been induced, the FDI system must estimate the size of the bias in order to determine
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the amount of adaptive feedback (represented by changes in Q) needed to compensate for

this failure. If the estimate is too large, the filter may become too conservatively tuned and

performance will degrade. If the estimate is too small, insufficient tuning may occur and

the filtei will not be able to track the states closely. Additional problems may result from

the filter becoming accustomed to the errors induced by the failure. If the filter adapts

to the bias, it may become less aware of minor changes in the bias and might lose the

ability to determine when the failure has been removed. Since the pilot would be alarmed

of the initial failure, operator-induced dither signals could be used to help improve future

detection and the overall filter performance would be improved

Another method of compensation is to estimate the size of the failure and remove it

from the incoming measurement. Assume the failure appears as a bias, b, on the rmeasure-

ment equation taken from Equation (2.11).

z.,(t,) = Hk[t;x,(t,)]tx,(t) + v(t,) + b (5.2)

If the GLR algorithm were able to find P/ accurately which is the MLE of the size of the

failure, then simply subtracting i5 from Equation (5.2) would eliminate the failure in the

system and the output of the Kalman filter would not be degraded. Other algorithms such

as MMAE could also use this idea.

5.3 Recommendations

A brief list of recommendations for future research is presented, with many of the

det..as concerning these items presented earlier.

* Yi•naiize the similarity transform to rescale the states and compare results to those

achieved without rescaling for both the Kalman filter and FDI algorithms.

* Verify doviinance of the diagonal terms in the residual covariance matrix, A (t), over

the non-diab.,onal terms of this matrix. See assumption 7.
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" Perform a study on optimal inputs intended to dither the system. Improvements

should be noted in the NRS filter performance, but the main goal would be to

decrease delays in detection and isolation of failures.

"* Pursue techniques for feeding back corrective signals such as adaptive tuning or

measurement correction discussed previously. Careful investigation of errors in the

state estimates should indicate the success of these methods.

"* Consider changing the failure models for the matching filters to look for ramp failures

rather than biases. A scheme with 10 matching filters (five for biases AND five for

ramps) should be compared against those with only five matching filters (five for

biases OR five for ramps).

"* Look into theoretical techniques for establishing thresholds rather than finding them

empirically.

"* Change the GLR algorithm listed in Appendix I to allow for various failure times.

This implies that ( could take on any value within the window, resulting in an MLE

of 0 and a GLR as a function of tj and 0. This GLR should better identify the time of

the failure and may outperform the simplified GLR algorithm. Consideration would

have to be given to increased detection time caused by the increased computations

necessary to implement this new GLR test.

" Look into MMAE techniques as a replacement for the FDI scheme. MMAE could

be used in conjunction with many MU the .e.o....e.datins listed above and th1e chi

square test should always be considered as an additional source of information. The

most significant task associated with this idea is developing the software capable of

performing the simulations. MSOFE is not currently structured to handle the bank

of Kalman filters associated with an MMAE scheme. The alternative would be to

adopt another software package designed to run multiple Kalman filters. The major

problem would be to convert the models and particularly the overhead associated with

generating the measurements for the GPS and RRS portions of the NRS system. In

either case, a head-to-head comparison of the results achieved by the M MAE method
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and those achieved in this thesis should provide insights into the relative strengths

and weaknesses of the GLR and MMAE approaches.
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Appendix A. Error Ms'del State Definitions

Tabular listings of the truth and filter models are presented. Tables A.1 and A.2

show the 41-state INS truth model with the LN-93 state numbers given for reference to

the Litton technical report on the INS (9). Tables A.3 and A.4 list the RRS and GPS

states respectively and Table A.5 lists only the states used in the NRS filter model.
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Table A.1. 41-State INS System Model: First 20 States

State State -Definition LN-93
Number Symbol State

1 60., X-component of vector angle from true to computer frame 1
2 boy Y-component of vector angle from true to computer frame 2
3 62, Z-component of vector angle from true to computer frame 3
4 0. X-component of vector angle from true to platform frame 4
5 qy Y-component of vector angle from true to platform frame 5
6 Z-component of vector angle from true to platform frame 6
7 W.V X-component of error in computed velocity 7
E b V, XY-component of error in computed velocity 8

9 65V, Z-component of error in computed velocity 9
10 b5h Error in vehicle altitude above reference ellipsoid __0

11 - 6hB Total baro-altimeter correlated error 23
16 6hL Error in lagged inertial altitude 11
17 ____Sa Error in vertical channel aiding state 12
18" 6S 4  Eiror in vertical channel aiding state 13
19 V-o X-component of accelerometer and 17

velocity quantizer correlated noise

20 V. Y-component of accelerometer and T 18
I velocity quantizer correlated noise

21 V, Z-component of accelerometer and 19
velocity quantizer correlated noise

22 bg. X-component of gravity vector errors -0

23 bg2  Y-component of gravity vector errors 21
24 bg,, Z-component of gravity vector errors 22
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Table A.2. 41-State INS System Model: Second 21 States

State State Definition LN-93
Number Symbol |_ State

25 b;, X-component of gyro drift rate repeatability 30

26 by Y-component of gyro drift rate repeatability 31
27 b, Z-component of gyro drift rate repeatability 32

28 S.9 X-component of gyro scale factor error 33
29 $91 Y-component of gyro scale factor error 34
30 Sg. Z-component of gyro scale factor error 35
31 Vbx X-component of accelerometer bias repeatability 48
32 Vb Y-component of accelerometer bias repeatability 49
33 V.7bW Z-cemponent of acceleroneter bins repe5aolity 50

34 SA4  X-component of accelerometer and velocity 51

quantizer scale factor error

35 SA, Y-component of accelerometer and velocity 52
quantizer scale factor error

36 SA. Z-component of accelerometer and velocity 53
quantizer scale factor error

37 SQAý X-component of accelerometer and velocity 54
quantizer scale factor asymmetry

38 SQA, Y-component of acceleroraeter and velocity 55

39 SQA. Z-component of accelerometer and velocity 56
quantizer scale tactor asymmetry

40 Al X accelerometer misalignment about Z-axis 66

41 /12 Y accelerometer misalignment about Z-axis 67
42 113 Z accelerometer inisalignment about Y-axis 68

43 ao X-acceleromei~er muisaignruent about Y-axis 69

44 O2 Y-accelerometer misalignment about X-axis 69
45 a3 Z-accelerometer misalignment about X-axis 69
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Table A.3. 26-State RRfS System Model

State IState D Iefinition

NSumber Symbl__________________________

12 IIj?b Range error due to equipment bias

-13 ]t~vb Velocity error due to equipment bias

46 6 PT I Transponder 1 X-COnRpon1eit Of position error

47 bP1 'f raaspo~ider 1 y-coinponent of position error
48 '5 PT -rasponde-r I z-co-mporteiit of position error

49 6RT71 TranWspoýn-der 1 range error due to atmn propagation
50 6PP2 JTranyi.,ponder_2_x-component of I-Astion error

51 6P. Transpoader 2 y-component of position error

62 6PT2. Transponder 2 2i-cornporient of position error
53 ~ ranspm~er2 ranige error due to atm propagatio

54 6JJ PTI. Tansponder 3 x-coinponent of position error
55 Transpond~r 3 y.-comportent of positioni errof
56 6JY 3 . Traimponcter 3 z-corrnponeitt of position error
57 61?T3. Transponder 3 ranxjge error due to atml Propagation
58 _

6
'T4._ Transponder 4: x--component, cf position. error

59 bp,," k .rransponder 4 y-component, of position error

Go Ii 2  Transponder I E-coinpoyient. of positiot. error

62 6 PT5ý. -Transpon.der 5 x-comrponcrnt of position error

6 ~ 6 PT. Transponder- y-ccomponent of position ce]rror
6P,5 Transponder 5 z-zorinponent of positiiierror__ W

65 6R ,, Trapsponder r5 x~r;-io error clue to ati.t propagationL
66 0PG Transponder C, x-cowponenut of position c-,ror

6196 _Transpondpr 6 y (0 v-inpoacmit of position error

68 6P 6  rnpiur6 z--compon0en-t of p)ositionl error
_____

6JT6,ý Tranisponder 6 ýanigce rror due to atmn propagation11
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Table A.4. 30-State GPS System Model

f State State Definition
Number Symbol _

14 6R1k_ ýUser clock bias

15 6Dakj User clock drift

[] 70 6R~1,R SV 1 code loop error
71 6 Rzrop. SV 1 tropospheric error
72 Rio,,, SV 1 ionospheric error
73 6R, . SV 1 clock error
74 x,,,, SV 1 x-component Of position error
75 3Ysv- SV 1 y-component of position error
76 KzSV SV 1 zycomponent of position error

77 , 6 Rmoop2 SV 2 code loop error
73 6 Rtrop2  SV 2 tropospheric. eiror
79 •Ro• SV 2 ionospheric error
80 kRC.•za_- SV 2 clock error "_
81 b3,V 2  SV 2 x-component of position error
82 by, SV 2 y-component of position error
83 6z,• SV 2 z-component of position. error

84 6 J•toop3  SV 3 code loop error
85 6Rtrop SV 3 tropospheric error

I 86 6Ri,, SV 3 ionospheric error

87 iR. SV 3 clock error
88 6X5 3  SV 3 x-component of position error
89 , SV 3 y-component of position error
90 bzl., SV 3 z-component of position error

91 6R~oo,4  SV 4 code loop error
92 6Rtrop, SV 4 tropospheric error

9 mion. SV 4 ionospheric error
94 6141k-, SV 4 clock error

95 bx",, SV 4 x-compoi-ent of position error
96 y SV 4 y-coxnpornent o position error
97 6z~,,, SV 4 z-component of position error
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Table A.5. 15-State Reduced-Order Filter Model

SState tate Definition
Number Symbol

1 60., X-component of vector angle from true to computer frame
2 60, Y-component of vector angle from true to computer frame
3 6, Z-comp)onent of vector angle from true to computer frame
4 __ ~ j X-component of vector angle from true to platform frame

5_____ r Y-componeut of vector angle from true to platform frame
6 ¢ Z-component of vector angle from true to platform frame
7 WV, X-component of error irn computed velocity

8 6 •, Y-componeat of error in computed velocity
!D 61V2 Z-component of error in computed velocity

10 -h Erior in vehicle altitude above reference ellipsoid
11 bhB Total baro-altimeter correlated error
12 bR, Range error due to equipment bias

.LPV 'Ib ý1%Y uttA- C I-to equtipmtttn,

14 &+,l,, User clock bias .... .. _ _

15 6Xdrkd,. User clock drift ._.

A-6



Appendix B. Dynamics Matrices and Noise Values

B. 1 Definition of Dynamics Matrices

The LN-93 error-state dynamics matrix F is defined in Chapter III as a combination

of submatrices. The NON-ZERO elements of these submatrices are presented in the tables

which follow. All the variables shown in the following tables are defined in the LN-93

technical report along with their uni s (9).
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Table B.1. Elements of the Dynamics Submatrix F11

1Element L Term Element Term i
(1,3) -p,, (,8)-C
(2,3) ___ (2,7) CRX

(3,1) py (3,2) -p2O
(4,2) -___ (4,3) 01,
(4,5) ._w,_, (4,6) -Wiq
(4,8) -CRY (5,1) a,
(5,3) -Q- (5,4) -Wit.
(5,6) w_ _ _ (5,7) CRx

(6,1) -qy (6,2) R

(6,4) wit, (6,5) -__ __ _

(7,1) -21/%-2'IQ (7,2) 2.Y2
(7.3) 2VQ (7,5) -A,
(7,6) AY (7,7) -VXCRX

(7,8) 2fl_ _ (7,9) -py - 29y

(8,1) 2V.Q, (8,2) -2VQ, - 2Va2
(8,3) 2VQ, (8,4)A,
(8,6) -Ax (8,7) -- 2Rz
(8,8) - V__c_ _ (8,9) p_ + 2Q
(9,1) 2V. __ (9,2.) 2Vý, ,%

(9,3) -2Vv_• _. 2V. •Q (9,4) -Ay
(9,5) A., (9,7) pv + 2Qy + V"CB.x
(9,8) -pa, - 2% + V'CRy (9,10) 2g,,/a

(9,16) -k 2  (9,17) -1
(9,18) k2 (10,9) 1

(10,16) -k_ (10,18) k, - 1

(17,16) k1 (17,18) -k3
(18,10) II (18,16) 1-k,
.(18,18) k 4 - 1

Table B.2. Elements of the D)ynamics Submatrix F 12

Element Terin Ellmenit Tern pjje-eiit "' r"J
(7 ,19) C ,, (7,20) C --12 (7,21) '1

(7,22) 1 (8,19) C,21  (8,20) C..
(8,21) C, (8,23) 1. (9,19) C",

7(9,20) c 0 (9,21) c•, (9,24) 1
(9,11) k2  (11) 11) k, (17,11) -k 3

(18,h k)4/6oB-2
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Table B.3. Elements of the Dynamics Submatrix F 13

Element I Term 11 Element[ Term 7 Element] Tem

(4,25) C(, (4,26) C12 (4,27) Cla
(4,28) cliwi (4,29) C 12wj,, (4,30) C13WA,,b.

(5,25) :21 (5,26) C22 (5,27) C23

(5,28) C21Wuib (5,29) C22wib, (5,30) C23 wUb.
(6,25) C31 (6,26) C32  (6,27) C,3

(6,28) 1c03 1 w,, (6,29) Ca32i,,, (6,30) C3_Wb.

Table B.4. Elements of tbe Dynamics Subbmatrix F 14

Element ETerm 11 Element ' Term fp- Eement] Term

(7,31) C[ _0 (7 ,325) 12 (7,33) 013

(7,34) C11-A4l (7,35) ••A- I1 (7,36) C0,AB'

(7,40) C,1 A- "7,41) -CI 2A- 7 7,42) .... I
___ 0A~ _C___A __

(7,43) 13A (8,31) C21 (8,32) C22
(8,33) C23 (8,34) C2 A' (8,35) C .---A

(8,36) C2 3A BT- (8,37) C21IAI (8,38) C22 1ABI
(8,39) C2:iA' 1 (8,40) C, A. (8,41) --C Af

(8,42) C23A§ (8,431 _ _ 3_'-.2.]a B (9,31) Q,31

(9,32) C32 (9,33) C: (9,34) C31A;
Y9,35 A (9,36) TCA- (9,37) C, Iall(9,38) V.c 2A (9,39) ,,1-' 3•,al•I 94 ) C•

(9,1) -C 3 2 AP (9,42) -- 33A" (9,43) CAi___L . .9,41)3£L__ __,:_
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Table B.5. Elements of the Dynamics Submatrix F 22

Element, Ter I[ Element Ter Element Ieri]
(19,19) (20,20) (21,21) 1
(22,22) - (23,23) - (24,24) --fl•(11,11) -fJ6ho _____ 1 .__ __ ___ __

The NON-ZERO elements of the dynamics matrix representing the the GPS and

RRS are shown in the following table.

Table B.6. Elements of the Dynamics Matrix for GPS & RRS

(49,49) -1/300ft-/sec (53,53) -1/300 ft 2/sec (57,57) -1/300.ft2/see
(61,61) -1/300 ft2 /sec (65,65) -1/300 ft 7 /sec (69,69) -1/ 3 0 0 ft /sec
(70,70) -1 ft 2 /.see (71.,71) -1/500 ft 2 /sec (72,72) -1/1500 ft 2 /,'ec

(77,77) -- 1 f-t/sec (78,78) -1/500 ft 2 /sec (79,79) -1/1500 ft 2 /sec
(84,84) -1 ft 2/sec (85,85) -1/500 ft 2 1sec (86,86) -1/1500 ftl/sec
(91,91.) -1 Pt Isec (92,92) -1/500 ft!sec (93,93) -1/1500ft2 /sec

~jj4,1i)~1.ft 2 /sce j______ __ __

B.2 Elements of the Process Noise and Measurement Noise Matrices

The process noise strength matrix Q associated with the INS truth model is also

partitioned into submatrices as described in Chapter I11. The N ON-ZERO elements o[f

thcse submatrices are shown in Tables B.7 and B.8. Note that Ihe .2 term,. in these

two tables are variable names only as defined in the Litton technik-al report zad deo not

represent variance terms typically associated with a2 . The process noise for the GPS wid

RRS portions of the truth model are listed in Table 1E,. Finally, the process noise values

used in the filter and the measurement noise values It are. presented in Tables B,!0 and

B.11.

--4



Table B.7. Elements of Truth Model Process Noise Submatrix Q1,

Element[Term" Element [ Tertn
(4,4) 2  (5,5) O2

(6,6) ( (7,7) •. -

(8,8) a2 (9,9) - %A.

Table B.8. Elements of Truth Model Process Noise Submatrix Q 22

Element Term Element Term _KEleent_. Term

(11,11) 213,ohUo (19,19) 2f v,.a 2 (20,20) 2-ýv , 1.
(21,21) 20,7.,.. II (22,22) 2039 UQ, (23,23) 2136 , jj

___4__4 ___2 __ _____trI ________

Table B.9. Elements of Truth Model Process Noise for GPS & RRS

(49,49) 6.667x10- 3 ftl/Sec (53,53) 6.667x10-'3 ft2.Se1 (569,5) 6.667x10/1 3 ft /sec13~(,,7 6.667x1-0-ft2 pl" e

(61,61) 6.667x10'- f. 2 l8ec (55,65) 6.667x10- 3 fIsec 1 (69,69) 6.667x10-' ft2 le
(71,70) 0.5 ft 2 /sec (71,71) 0.04 ft 2/.•et• (7272) 0.004 ft 2 !•.cc

(77,77) 0.5 ft 2 /sec (78,78) 0.004 ft-/•sc (79,79) 0.004 .ft2 /ec

(84,84) 0.5 ft'/sec (85,85) 0.004 ft2 /5cc (86,86) 0.004 ft-/sec
(91,91) 0.5 ft 2 sec (92,92) j 0.004 ft 2 1sec (93,93) 0.004 ft 2 /Ics

Table B.10. Filter Process Noise Q

I_ I Term I Element ____ Term

(1,1) FO.lx10-' 3
&l.OxlO-'3rad2/sec (2,2) 0.58xlO- & 1.Ox3O-1 " rad2 /sec [

(3,3) 0.0 rad2/see .....i(4,4) 100 rad2/sec_
(5,5) 500 rad2 /se (6,6) 45 rad2 /scC

800 ft 2 lsec 3  (8,8) 400 ft 2 /,SecI

(9,9) 8000 ftI'sec3  (10,10) 20 ft 2/s8cc 2

(11,111) 400 ft 2 /sec2 (12,12) 17 & 40 ft2 /13cc 2

.1.3,13) 1 0.0 ft 2 / sec (14,14) 14 & 40 ftl/sec"
,(15,.1) 0.5x1-J' 3a fp2/sec_

"flable B.1 i. Truth and Filter Measurenent Noises R

7M'i.asurenient '1Trnth Noise Filter Noise

"-PaoAlto. 200 ft1 2500 ft2-
I 1- ,- .0--eHo2fl,,, 0.02 fS2/scY

~Tran~pondc• ! 4 Pft. 100 ft 2

2 ft2 75 fl'



Appendix C. Miscellancous Plots
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Appendix D. Baseline Filter Plots

All the state plots contained in this appendix contain five traces. The innermost

trace (- - -) on each data plot is the mean error time history for the applicable state.

Mean Error is defined as being the difference between the filter's estimate of the state and

the true state, averaged over the number of Monte Carlo runs performed. The equation

describing this relationship is defined by (13, 27):

N IV

.A1,3ti) - k eiQ.,) =1 4jZ ki(ti) - Xtrue.(ti)} (D.l)
1 1 I

where kj(ti) is the filter-computed estimate of a given state and xtue,(ti) is the truth

model value of the same state, at time ti, for run j, and N is the number of time histories

in the simulation (10 in this thesis).

hi addition to the center trace, two snore pairs of traces are plotted and labeled

Mean+-Sigma. The first pair (represented by ..- ) is symmetrically displaced about the

mean and as a result follows the "undulations" of the M!(cj). 'Pbe locus of these traces is

calculated from M1Q(ti) ± V-,/tj , where PQ(t,) is the true ei. variance at time ti. The

tfue standard deviation is calculated froin (13, 27):

IV= _-- -IV- I_

where N is the number of runs in the Monte Carlo simulat•on (10 in this thesis), and M ,(t2)

is the square of the mean of a given state at each time o•" interest (such as measurement

times).

The last pair of traces (-) represent the filter computed ± ci,, values for the

same states and are symmetrically displaced about zero because the filter "believes" that

it is producing zero-mean errors (15, 27). These quantities are propagated and updated in

the MSOFE (22, 27) software using the covariance propagation equation shown in Chapter

II. These traces represent the filter's estimate of its own error.
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Similar statistics are computed for the measurement residuals with the residual co-

variance defined in Chapter II and labeled FOiter-+-Signma. Finally, baseline plots for the

GLR and chi-square algorithms are shown, with three window sizes presented for the

chi-square test.
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Appendix F. Jamming Failure Plots

Selected state and residual plots are shown to illustrate the performance of the NR.S

filter under heavy janmming conditions. GLR and CIII plots are presented for all three

jamming levels.
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Appendix F, Bias Failure Plots

Selected state and residual plots are shown to illustrate the performance of the NR.S

filter with bias failures induced on the SV's. Some of the statistics are masked by the large

vertical scale of the plots, but this allows the fuil range of the mean error and residual

values to be seen, which best characterizes the filter performance. A variety of GLR and

X plots illustrate the FDI performance for all. bias 2'ailures considered. Several plots are

shown twice with two different vertical scales to reveal significant details that are lost in

other plots.
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Appendix G. Ramp Failure Plots

Selected state and residual plots are shown to illustrate the performance of the NRS

filter with ramp failures induced on the SV's. Some of the statistics are masked by the

large vertical scale of the plots, but t1his allows the full range of the mean error and residual

values to be seen, which best characterizes the filter performance. A variety of GLR and

X plots illustrate the FDI performance for all ramp failures considered. Several plots are

shown twice with two different vertical scales to reveal significant details that are lost in

other plots.
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Appendix H. GPS Failure Plots

Selected state and residual plots are shown to illustrate the complete degradation of

the NRS filter with the loss of GPS signals.
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Appendix I. Software

The routines shown in this appendix were run on Matrix, (8) with the data provided

by MSOFE (22) and stored in Matrix, compatible data files. The theory presented in

Chapter 11 is implemented with documentation to asist the reader.

1/ This is a MatrixX macro that performs a (TLR te-st with

// n = I for all t. The routine "lout" is called to get the

// the time-varying elements of F, H, Fain, coy, & gamma stored

// in data files fout, hout, k2-kll, and uout.

// The F matrix is discretized and windowing is applied.

// Must of the variable naris apply to the theory presented

1/ in the thtsis in Chapter II for the GLR test. Only 10 measurements

if ars included: SVI-4 and TRl-6 with -the baro anc velocity aiding

// left out as discussed in the thesis. NOTE: This routine takes

/ between 30-60 mi-nrtes to rum depending on the machine...be patient

If

glr--"exec(IglrI)" ; //set up macro

lout="exec (' lout') "; //fet up macro

/,load data - NOK7C: these are commented out as they loaded in already

I/load 'uout.mr.d',load 'hout.mxd',load 'fout.mxd' ....

I/load 'k2out.mxd' ,load 'kluut.mxd',load 'k4out.mxd' ....

//load 'k5out m-d' ,!oad 'k6out.mxd',load 'k'out.mxd',...

//load 'k8out.mxd',loa" 'k9out.mxd',load 'k10out .mxd',load 'kllout.mxd';

i/load 'simtru.mxd';

I-

I/initialize constant variables

If

ns-15; //nuaher of states

simtime=3599; //length of siiulation=3599

dtr-2; //Iasple rate

w6-10; f/set gindow size

d=[t;0;0;0;0;O;C;0;O;O]; //failure matrix

n=1; I/failure step fnnction, assumed.l for all time

yol6=[0;0;0;O;O;O;0;0;;0;0;0;0;0; 0]- //staxt, at 0

b-O*one.,s(15); //driving terms matrix, not really used=O, but

// needed for the discretize command
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dd=O*ones(lO,15); //D matrix not really used=O, but needed

// tor the discretize command

hrO*ones(10,15); //set up H-matrix

f=O*ones(i5,15); //set up F-matrix

cov=O*ones(10,10); //set up residual Coy matrix

//constant H values

//

//constant F values

/-

f(9,10)=3.0668051539128074D-6;
I (10 9)=1

f(14,15)=i;

f(9,11)=.0004;

(1I0,11)=.03;

a-0;... I/s for summing

cr0;... I/c for summing

//

//Initialize the window

//

for k=2:wa-i,...

kt-k,... //set index value for lout routine

]lout[;... //get F,H,gajn(K),cov, & gamma

ss-[f b;h dd];... //form state space matrix

sd=discretize(ssBns,dt, 'ztransform');... //discretize the model

[phi,bd,cdJ=split(sd,ns);... //split into individual matrices

covi=inv(cov);... //get residual coy-inverse

yneu=phi*(eye(15)-gain*h)*yold-phi*gain*d*n;... //Set y

yold=ynew; ... I/tore recursive value

r=h*ynew+d;... //get m

stermkk)=r'*covi*gamma;... //find siumation tern for s

s=s+sterm(k);... //add sterms to get 5

cterm(k)--m'*covi*m;... //find summation term for c
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c=c+cterm(k);... //add cterms to get c

l(k)=(s/c)*s;... //MLE 1(k)

end,

I/

//Slide the window

//

for k=ws:silmtiMe . .

kt-k;... //get new value in window

]lout[;... //get F,I[,gain(K),cov, I gamma

ss=[f b;h dd];... //form state space matrix

sd=discretize(ss5,n,dt, 'ztransf orm');..., //discretize the model

[phi,bd,cd]=split(P-d,ns);... //split into individual matrices

covi-inv(cov);... //get residual coy-inverse

ynew=phs*(eye(15)-gain*h)*yold-phi*gainwd*n;... //get y

yold-ynew;... //keep recursive value

r~h*ynew+d; ... //get m

sterm(k)-m'*covi*gamna;... //f ind summation term for s

ss+sterm(k)-sterm(k-vs+1);... //add sterms to get s

cterm(k)sm'*covi*m; ... I/find summation term for c

c=c+cterm(k)-cterm(k-vs+l);... //add cterms to get c

l(k)=(s/c)*e;... //MLE 1(k)

end,

//

//Plot results

1/

for i=l:simtime,...

time(i)=tC(2*i,1);... //keep time variable only from simtru.mxd data

end,

plot(time,l, 'repol/xlabel/Time (sec)/ylabel/MLE, L(k)/upper')

\\doorbell //indicates end of program

**************************4****************** *****************1
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//Routine "lout": Lead in run data for post processing..

//called by macro "gir"..

//Variable H, F, It K values...

1/,...

h(1,1)-hout(kt,1);... f/H-Matrix

h(1,2)chout~kt,2);..

h(1,1O)=hout(kt,3);-...

h(2,1)=hxout(kt,.4);...

h(2,2)=hout(kt,5); ...

h(2,1O)zhout(kt,6); ...

h(3,1)=hout~kt,7); ...

h(3,2)=hout(kt,8); ...

h(3,1O)=hout(kt,9); ...

hC4,1)bhout(kt,1O); ...

hC4,2)>hout(kt,1i); ...

h(4,1O)=hout(kt,i2); ...

h(5,i)=hout(kt,13); ...

hCS,2)=haut(kt,14). ...

h(5,1O)'.hout(kt,1S); ...

hC6,1)'hout(kt,l6); ...

h(6,2)-hout(kt,17);..

hC6,1O)=hout~kt,18):...

h(7,1)rhout(kt,19); ...

h(7,2)"bout(kt,20)); ...

h(7,IO)=hout(kt,21); ...

li(8 ,1) chout Ckt ,22) ; ...

h(8,2)=hout(kt,23); ...

h(8,lO)"hout~kt,24);...

h(9,1)-hout(kt,25);..

h (9 ,2) -hout (kt ,26) ; ...

hi(9,1O)"hout~kt,27); ...

h(1O,2).'hout(kt,29); ...

h(1O,1O)=hout(kt,30); ...

f(1,3)Mfout(kt,1); ... //YP-atrix
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tC1.8)tfout(kt,2): ...

I C2.3)=fout(kt,3);..

fC2,7)umfout~kt,4);..

t(3,1)rfout~kt,5);..

f (3,2)-fouat kt, 6) ;...

1(4,2)-iout~kt,7); ...

fC4,3)=fout(kt,8): ...

I(4,6)stout(kt,1O); ...

t(4,8)-iout(kt,11); ...

ICS,1)-faut~kt,12); ...

I(5.3W-fout~kt,13);..

t(5,4).'tout(kt,14);..

t(5,6).'tout(kt,15); ...

±(5,7)tfout~kt,16); ...

1C6,1)=fout~kt,iV);..

1(6,2)-fout~kt,i8); ...

f(6,4)-fout~kt,19);..

f(6,5)=fout(kt,20); ...

t(7,1)=tout(k-t,21); ...

(,%7.2)-fv (kt,2); .

f CT 3" dolt (kt ,23) ; ..

fI("T,5)t-faut (kt,MC) ; ...

tC7,)ztout(kt,2&); ...

f(7,)-fo't(kt,26); ...

f (7, 6) -fout it, ~27) ..

IC,9>-ioit(ktl,28); ...

I CS,2)rfout(kt,30); ...

f(.8,3)-fout(kt,31);..

I (8,4)uqout(kt,,32), ...

t(8,6,)-toat(kt,33) -k...

f(8,8)-fovt(kt,25); ...

fC8,9)afout(kt,36); ..

f(9,1)u'out(kt,37);,..

f(9,2)wfout(kt,38); ...

1-5



f(9,3)u-tout(kt,39);...

f(9,4)-±out~kt,40);...

i(9,S)'fout(kt,41); ...

t(9,7)=fout(k-c,42);...

EC9,8)-fout(kt,43); ...

gaint(1,1:15)=k2Ckt, :); ... //Gain transposed

gaint(2,1:15).k3(kt,:); ...

gaint(3,1: 15)ut4Ckt,:); ...

gaint(4,1:15)=k5(kt,:); ...

gaknt(5,1:15)'k6(kt,:);...

gaint(6,1:15)=k7(kt,); ...

gaintC7,1:15)=k8Ckt,:);..

gaintC8,1:15)'k9(kt, :); ...

ga~int (9,1:15)sklO(kt,W ;...

gaint(1O,1:15).'kll(kt,:); ..

gamnat(l:1O)=u(kt,[3 5 7 9 11 13 15 17 19 21]); ... I/Residuals

gaznza=gammat'; .... I/transpose

gaintgaaiit'; ... I/transpose

for j=1:1O,...

cov~j ,j)=sqrt~u(kt ,2*j)); ... I/Residual Coy diagonal terms

end,...
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//MatrixX routine to generate a chi-squared plot.

// Data files used are uout.mxd and simtru.mxd.

II

c'"exec('chi')"; // set up macro

clear r v vv vi 1 n 1 lw // clear values from last run

//initialize values

k=0;

nm=10; //number of measurements

//

// Separate uout into r and v vectors. Where r represents

// the residuals, and v represents the residual covariances.

//

zor i=3:2:22,...

k=k+l;...

end

I/

// Find rVr scalar for all time

/1

for j-2:3599,... I/window of time

vv=O*ones(nm);... //initialize residual coy matrix

for a=l:nm,...

vv(m,m)=v(j,m);... //put diagonal terms in a square matrix

vi......I

vi=inv(vv);... //Get vv-inverse

rvr(j)--r(j,:)*vi*r(j,:)' ; . .. //Get summation term

time(j)--t(2*jjl); ... //extract time variable from simtru.mxd

end

//

// Find chi(k) summation

/!

chi(i) -rvr (l);

for k=2:3599,...

chi(k)-chi(k-1)+rvr(k); ...

endI
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n-15; f/size of window

// intialize first window values

for j=i:n-l,...

lwl(j)=chi(j);...

end

// compute remaining values over time by adding new

/1 values into the window and subtracting old values out

// of the window.

for j=n:3599,....

Ivl(j)=chi(j)-chi(j-n41); ...

end

// clean up first part of plot if transients are too large

for j=1:300,...

lwi(j)=lwi(300);...

end

n=4 5 ; //size of window

// intialize first window values

for jf1:n-i,...

lw3C(j)=chi(j);...

end

// compute remaining values over time by adding new

// values into the window and subtracting old v ilues out

1/ of the window.

for j-:3599.

lw3(j)-chi(j)-chi(j-n+1); ....

end

// clean up first part of plot if transients are too large

for j=1:300,...

lw3(j)-Iw3(300);...

end

n-75; i/size of window

// intialize first window values

for jsl:n-1 ....

lw5(j)=chi(j);...
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end

/f compute remaining values over time by adding new

// valuest into the window and subtracting old values out

/f of the window.

for j-n:3599,...

i5v(j)=chi(j)-chi(j-n+i);...

end

I/ clean up first part of plot if transients are too large

for j=1:300 ....

l1S(j)l -5(300);...

end

\\cuckoo // indicates end of routine

//plot results

plot(time, [Lll.,i3,].vS], 'repol/rlabel/Time (sec)/ylabel/Chi(k)/...

ynmir' nUluged/i5 Wixzk 145 ? dWW . WLUdow,/. r .

t:itle/I')
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